<p style='text-indent:20px;'>This paper deals with a quasilinear chemotaxis system with nonlinear signal production</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{eqnarray*} \label{1a} \left\{ \begin{split}{} & u_t = \nabla\cdot(\phi(u)\nabla u)-\chi\nabla\cdot(\psi(u)\nabla v), & (x, t)\in \Omega\times (0, \infty), \\ & v_t = \Delta v-v+g(u), & (x, t)\in \Omega\times (0, \infty), \end{split} \right. \end{eqnarray*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>under homogeneous Neumann boundary conditions in a smoothly bounded domain <inline-formula><tex-math id="M1">\begin{document}$ \Omega \subset \mathbb{R}^{n} $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M2">\begin{document}$ \chi\in \mathbb{R} $\end{document}</tex-math></inline-formula>, the nonnegative nonlinearities <inline-formula><tex-math id="M3">\begin{document}$ \phi, \psi $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ g $\end{document}</tex-math></inline-formula> belong to <inline-formula><tex-math id="M5">\begin{document}$ C^{2}([0, \infty)) $\end{document}</tex-math></inline-formula> and satisfy <inline-formula><tex-math id="M6">\begin{document}$ \phi(u)\geq K_{0}(u+1)^{m}, \psi(u)\leq K_{1}u(u+1)^{\alpha-1} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M7">\begin{document}$ g(u)\leq K_{2}(u+1)^{\beta} $\end{document}</tex-math></inline-formula> with some <inline-formula><tex-math id="M8">\begin{document}$ K_{0}, K_{1}, K_{2}, \beta>0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M9">\begin{document}$ \alpha, m\in\mathbb{R} $\end{document}</tex-math></inline-formula>. </p> <p style='text-indent:20px;'><inline-formula><tex-math id="M10">\begin{document}$ \bullet $\end{document}</tex-math></inline-formula> In the chemo-attractive setting, i.e. <inline-formula><tex-math id="M11">\begin{document}$ \chi>0 $\end{document}</tex-math></inline-formula>, assume that <inline-formula><tex-math id="M12">\begin{document}$ n\geq1 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M13">\begin{document}$ \beta>1 $\end{document}</tex-math></inline-formula>, it is shown that the solution of the above system is global and uniformly bounded provided that <inline-formula><tex-math id="M14">\begin{document}$ \alpha+\beta-m<1+\dfrac{2}{n} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M15">\begin{document}$ m >-\dfrac{2}{n} $\end{document}</tex-math></inline-formula>.</p> <p style='text-indent:20px;'><inline-formula><tex-math id="M16">\begin{document}$ \bullet $\end{document}</tex-math></inline-formula> In the chemo-repulsive setting, i.e. <inline-formula><tex-math id="M17">\begin{document}$ \chi<0 $\end{document}</tex-math></inline-formula>, assume that <inline-formula><tex-math id="M18">\begin{document}$ n\geq3 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M19">\begin{document}$ g'(u) \geq0 $\end{document}</tex-math></inline-formula>, it is proved that the solution of the above system is also global and uniformly bounded if <inline-formula><tex-math id="M20">\begin{document}$ \alpha-m+\dfrac{n-2}{n+2}\beta<1 $\end{document}</tex-math></inline-formula>.</p>
<p style='text-indent:20px;'>This paper deals with a quasilinear parabolic-elliptic chemo-repulsion system with nonlinear signal production</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{eqnarray*} \label{1a} \left\{ \begin{split}{} & u_t = \nabla\cdot(\phi(u)\nabla u)+\chi\nabla\cdot(u(u+1)^{\alpha-1}\nabla v)+f(u), & (x,t)\in \Omega\times (0,\infty), \\ & 0 = \Delta v-v+u^{\beta}, & (x,t)\in \Omega\times (0,\infty), \end{split} \right. \end{eqnarray*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>under homogeneous Neumann boundary conditions in a smoothly bounded domain <inline-formula><tex-math id="M1">\begin{document}$ \Omega \subset \mathbb{R}^{n}(n\geq1), $\end{document}</tex-math></inline-formula> where <inline-formula><tex-math id="M2">\begin{document}$ \chi,\beta>0,\alpha\in\mathbb{R}, $\end{document}</tex-math></inline-formula> the nonlinear diffusion <inline-formula><tex-math id="M3">\begin{document}$ \phi\in C^{2}([0,\infty)) $\end{document}</tex-math></inline-formula> satisfies <inline-formula><tex-math id="M4">\begin{document}$ \phi(u)\geq(u+1)^{m} $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M5">\begin{document}$ m\in\mathbb{R}, $\end{document}</tex-math></inline-formula> and the function <inline-formula><tex-math id="M6">\begin{document}$ f\in C^{1}([0,\infty)) $\end{document}</tex-math></inline-formula> is a generalized growth term.</p><p style='text-indent:20px;'><inline-formula><tex-math id="M7">\begin{document}$ \bullet $\end{document}</tex-math></inline-formula> When <inline-formula><tex-math id="M8">\begin{document}$ f\equiv0, $\end{document}</tex-math></inline-formula> it is shown that the solution of the above system is global and uniformly bounded for all <inline-formula><tex-math id="M9">\begin{document}$ \chi,\beta>0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M10">\begin{document}$ m,\alpha\in\mathbb{R} $\end{document}</tex-math></inline-formula>.</p><p style='text-indent:20px;'><inline-formula><tex-math id="M11">\begin{document}$ \bullet $\end{document}</tex-math></inline-formula> When <inline-formula><tex-math id="M12">\begin{document}$ f\not\equiv0 $\end{document}</tex-math></inline-formula> and assume that <inline-formula><tex-math id="M13">\begin{document}$ f(u)\leq ku-bu^{\gamma+1} $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M14">\begin{document}$ k,b,\gamma>0, $\end{document}</tex-math></inline-formula> it is proved that the solution of the above system is also global and uniformly bounded for all <inline-formula><tex-math id="M15">\begin{document}$ \chi,\beta>0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M16">\begin{document}$ m,\alpha\in\mathbb{R}. $\end{document}</tex-math></inline-formula></p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.