Pyroptosis is triggered by inflammasomes after its activation by various inflammatory stimulations, including lipopolysaccharide (LPS) and improper pH. This may result in programmed death of the affected cell. It is well known that NLRP1 and NLRP3 inflammasomes mediate the production of various cytokines in inflammatory disorders; however, it is still unknown whether NLRP1 and NLRP3 inflammasomes can influence the LPS‑induced pyroptosis in the progression of knee osteoarthritis (KOA). In the present study, the correlation between the NLRP inflammasomes and fibroblast‑like synoviocytes (FLSs) pyroptosis was investigated in vivo and in vitro. Human synovial samples were collected from KOA patients and the expression of NLRP1 and NLRP3 inflammasomes was analyzed. Human FLS were isolated in vitro and stimulated with LPS. To determine whether NLRP1 and NLRP3 inflammasomes are involved in FLS pyroptosis, NLRP1 and NLRP3 small interfering RNAs (siRNAs) were used. The results showed that the expression of NLRPs and inflammasome‑related proteins were upregulated and FLS stimulated with LPS+ATP resulted in cell pyroptosis. However, LPS+ATP‑induced pyroptosis was attenuated by NLRP1 and NLRP3 siRNAs. The results of the present study indicate that LPS‑induced FLS pyroptosis may be mediated by either NLRP1 or NLRP3 inflammsomes. Overall, based on the data obtained from patients and in vitro cells, the present finsings showed that NLRP1 and NLRP3 inflammasomes are highly involved in the FLS inflammation and pyroptosis. Furthermore, inhibition of NLRP1 and NLRP3 led to a remarkable reduction of pyroptosis‑related cytokines. Thus, NLRP1 and NLRP3 inflammasomes may be important in the pathogenesis of OA and may represent a novel therapeutic target.
Increasing evidence has shown that macrophage pyroptosis in different tissues participates in chronic aseptic inflammation and is related to tissue fibrosis. Our last studies also revealed the vital role of synovial fibroblast pyroptosis in the onset and development of knee osteoarthritis (KOA). In this study, we aimed to investigate whether synovial macrophage pyroptosis did occur and whether this form of cell death should be related to synovitis and fibrosis of KOA. In the synovial tissue of KOA model rats, we observed a decrease of caspase1, NLRP3, ASC, and GSDMD caused by macrophage depletion in both the mRNA and protein expressions. Besides, rats treated with the specific caspase1 inhibitor Ac-YVAD-CMK showed less inflammatory reaction and fibrosis, not only in the expression of proinflammatory factors IL-1β, IL-18, and HMGB1 and fibrosis markers TGF-β, PLOD2, COL1A1, and TIMP1 but also in the observation of HE staining, Sirius Red staining, and the transverse diameters of the right knees. Subsequently, we established an LPS+ATP-induced model in macrophages mimicking the inflammatory environment of KOA and inducing macrophage pyroptosis. Macrophages transfected with caspase1 siRNA showed reduced cell death; meanwhile, the relative expression of pyroptosis-related proteins were also downregulated. In addition, the level of fibrotic markers in synovial fibroblasts were significantly decreased after coculture with siRNA GSDMD-transfected macrophages. To conclude, synovial macrophage pyroptosis may occur in the pathological processes of KOA and inhibition of synovial macrophage pyroptosis alleviates synovitis and fibrosis in KOA model rats.
Fibroblast-like synoviocytes (FLSs) are the main effector cells of knee osteoarthritis (KOA) synovial fibrosis. Our last report showed that NLRP1 and NLRP3 inflammasomes may mediate LPS/ATP-induced FLSs pyroptosis in KOA. In the present study, we found an elevated hypoxia-inducible factor-1α (HIF-1α) level in the synovial tissue of KOA model rats, and inhibiting the increase of HIF-1α could improve synovial fibrosis in rats. Subsequently, we established LPS/ATP-induced model in FLSs mimicking the inflammatory environment of KOA. FLSs transfected with siRNA HIF-1α showed a reduced cell death; meanwhile, the relative expression of pyroptosis-related proteins was also downregulated. Additionally, FLSs transfected with or without siRNA GSDMD were exposed to hypoxia. GSDMD silencing can significantly reduce both gene and protein levels of fibrogenic markers transforming growth factor-β (TGF-β), procollagen-lysine, 2-oxoglutarate 5-dioxygenase2 (PLOD2), collagen type I α1 chain (COL1A1), and tissue inhibitor of metalloproteinases 1 (TIMP1). Taken together, our findings indicate that increased HIF-1α is highly involved in the KOA synovial fibrosis. Moreover, elevated HIF-1α may aggravate synovial fibrosis via FLS pyroptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.