The introduction of herbaceous peony (Paeonia lactiflora Pall.) in low-latitude areas is of great significance to expand the landscape application of this world-famous ornamental. With the hazards of climate warming, warm winters occurs frequently, which makes many excellent northern herbaceous peony cultivars unable to meet their chilling requirements (CR) and leads to their poor growth and flowering in southern China. Exploring the endodormancy release mechanism of underground buds is crucial for improving low-CR cultivar screening and breeding. A systematic study was conducted on P. lactiflora ‘Meiju’, a screened cultivar with a typical low-CR trait introduced from northern China, at the morphological, physiological and molecular levels. The CR value of ‘Meiju’ was further verified as 677.5 CUs based on the UT model and morphological observation. As a kind of signal transducer, reactive oxygen species (ROS) released a signal to enter dormancy, which led to corresponding changes in carbohydrate and hormone metabolism in buds, thus promoting underground buds to acquire strong cold resistance and enter endodormancy. The expression of important genes related to ABA metabolism, such as NCED3, PP2C, CBF4 and ABF2, reached peaks at the critical stage of endodormancy release (9 January) and then decreased rapidly; the expression of the GA2ox8 gene related to GA synthesis increased significantly in the early stage of endodormancy release and decreased rapidly after the release of ecodormancy (23 January). Cytological observation showed that the period when the sugar and starch contents decreased and the ABA/GA ratio decreased was when ‘Meiju’ bud endodormancy was released. This study reveals the endodormancy regulation mechanism of ‘Meiju’ buds with the low-CR trait, which lays a theoretical foundation for breeding new herbaceous peony cultivars with the low-CR trait.
Japanese iris (Iris japonica) is a popular perennial ornamental that originated in China; it has a long display period and remains green outdoors throughout the year. winter dormancy characteristics contribute greatly to the evergreenness of herbaceous perennials. Thus, it is crucial to explore the mechanism of winter dormancy in this evergreen herbaceous perennial. Here, we used the hybrid RNA-seq strategy including single-molecule real-time (SMRT) and next-generation sequencing (NGS) technologies to generate large-scale Full-length transcripts to examine the shoot apical meristems of Japanese iris. A total of 10.57 Gb clean data for SMRT and over 142 Gb clean data for NGS were generated. Using hybrid error correction, 58,654 full-length transcripts were acquired and comprehensively analysed, and their expression levels were validated by real-time qPCR. This is the first full-length RNA-seq study in the Iris genus; our results provide a valuable resource and improve understanding of RNA processing in this genus, for which little genomic information is available as yet. In addition, our data will facilitate in-depth analyses of winter dormancy mechanisms in herbaceous perennials, especially evergreen monocotyledons.
Winter dormancy is a protective survival strategy for plants to resist harsh natural environments. In the context of global warming, the progression of dormancy has been significantly affected in perennials, which requires further research. Here, a systematic study was performed to compare the induction of dormancy in two closely related iris species with an ecodormancy-only process, the evergreen Iris japonica Thunb. and the deciduous Iris tectorum Maxim. under artificial conditions. Firstly, morphological and physiological observations were evaluated to ensure the developmental status of the two iris species. Furthermore, the expression patterns of the genes involved in key pathways related to plant winter dormancy were determined, and correlation analyses with dormancy marker genes were conducted. We found that deciduous iris entered dormancy earlier than evergreen iris under artificial dormancy induction conditions. Phytohormones and carbohydrates play roles in coordinating growth and stress responses during dormancy induction in both iris species. Moreover, dormancy-related MADS-box genes and SnRKs (Snf1-related protein kinase) might represent a bridge between carbohydrate and phytohormone interaction during iris dormancy. These findings provide a hypothetical model explaining the later dormancy in evergreen iris compared with deciduous iris under artificial dormancy induction conditions and reveal some candidate genes. The findings of this study could provide new insights into the research of dormancy in perennial plants with an ecodormancy-only process and contribute to effectively managing iris production, postharvest storage, and shipping.
Cold acclimation (CA) is a strategy which plants have evolved to increase freezing tolerance. Global climate change could obstruct CA and raise the probability of winter injury, especially for evergreens. Hence, understanding the regulatory mechanism of CA is crucial to improve freezing tolerance in evergreen plants. A comparative study on a pair of closely related evergreen and deciduous iris species in response to cold through CA was conducive to uncovering and complementing the knowledge of CA. We investigated morphological, physiological and biochemical changes, as well as the expression of associated genes in the functional leaves of both iris species from natural CA to deacclimation. Briefly, fast and strong CA in the evergreen iris might cause early expressions of BAM1, NCED3, GPX6, etc., which leads to strong enzyme activity of starch degradation, abscisic acid biosynthesis and reactive oxygen species scavenging. Additionally, genes belonging to the antioxidant system were mainly induced during deacclimation. These results suggest that interspecies differences in the leaf freezing tolerance of irises are associated with the rate and degree of CA, which activates multiple signaling networks with complex interactions and induces the transcription of cold-responsive genes. Moreover, the ICE–CBF–COR signaling cascade may integrate and initiate diverse cold-responsive pathways during CA of the evergreen iris. The findings of this study provide valuable insight to further research on CA mechanisms and implicate genes which could support breeding strategies in herbaceous perennials under climate changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.