Recent studies have reported a strong association between gestational diabetes mellitus (GDM) and postpartum depression (PPD), but little is known about the underlying physiological mechanism. In this study, a GDM rat model was used to evaluate the direct effect of GDM on PPD and to explore the mechanism. After parturition, the GDM dams were divided into two groups: blood glucose not recovered group (GH group) and blood glucose recovered group (GL group). Fasting plasma glucose (FPG), cortisol (COR) and serotonin (5-hydroxytryptamine, 5-HT) metabolism were continuously monitored during the lactation period, until postnatal day 21. PPD was evaluated by behavioral tests. At the endpoint, the expression of the key enzymes of Trp metabolic pathway in colon and brain tissues was analyzed by immunohistochemistry and western blot. The microbe composition of colonic contents was determined by 16S rDNA gene sequencing. The results showed that GDM induced postpartum depression-like behavior in rats. The HPA axis hormone did not show the typical stress state of depression, but the level of 5-HT decreased significantly in serum, prefrontal cortex and hippocampus, and the Kyn/Trp ratio increased significantly in serum and prefrontal cortex, implying the switch of the tryptophan (Trp) metabolism from the 5-HT pathway to the kynurenine (Kyn) pathway. The expression of Indoleamine 2,3-dioxygenase (IDO), a key rate-limiting enzyme in Kyn metabolism, was up-regulated in the colon and brain, which was an important reason for this switch. This switch was accelerated by a decrease in the expression of tryptophan hydroxylase (TPH), a key enzyme of the 5-HT production pathway, in the colon. GDM dams displayed significant changes in gut microbiome profiles, which were correlated with depression. The ratio of Firmicutes to Bacteroidetes decreased. Lactobacillus and Bacteroides were negatively correlated with 5-HT level and positively correlated with Kyn level, whereas Clostridium XlVa and Ruminococcus were positively correlated with 5-HT level. These results suggest that GDM disrupts both the Trp pathway and the composition of the gut microbiota, which provide a putative physiological basis for PPD.
The aim of this systematic review was to summarize concentrations of human milk oligosaccharides (HMOs) in the Chinese population. We searched articles originally published in both Chinese and English. When compiling data, lactation was categorized into five stages. We found that 6′-sialyllactose, lacto-N-tetraose, and lacto-N-neotetraose decreased over lactation. Conversely, 3′-fucosyllactose increased over lactation. Our study represents the first systematic review to summarize HMO concentrations in Chinese population. Our findings not only provide data on HMO profiles in Chinese population but suggest future directions in the study of the metabolism of HMOs.
This study was designed to identify serum and amniotic fluid (AF) metabolic profile changes in response to gestational diabetes mellitus (GDM) and explore the association with maternal–fetal outcomes. We established the GDM rat models by combining a high-fat diet (HFD) with an injection of low-dose streptozotocin (STZ), detected the fasting plasma glucose (FPG) of pregnant rats in the second and third trimester, and collected AF and fetal rats by cesarean section on gestational day 19 (GD19), as well as measuring the weight and crown–rump length (CRL) of fetal rats. We applied liquid chromatography–tandem mass spectrometry (LC-MS/MS) for the untargeted metabolomics analyses of serum and AF samples and then explored their correlation with maternal–fetal outcomes via the co-occurrence network. The results showed that 91 and 68 metabolites were upregulated and 125 and 78 metabolites were downregulated in serum and AF samples exposed to GDM, respectively. In maternal serum, the obvious alterations emerged in lipids and lipid-like molecules, while there were great changes in carbohydrate and carbohydrate conjugates, followed by amino acids, peptides, and analogs in amniotic fluid. The altered pathways both in serum and AF samples were amino acid, lipid, nucleotide, and vitamin metabolism pathways. In response to GDM, changes in the steroid hormone metabolic pathway occurred in serum, and an altered carbohydrate metabolism pathway was found in AF samples. Among differential metabolites in two kinds of samples, there were 34 common biochemicals shared by serum and AF samples, and a mutual significant association existed. These shared differential metabolites were implicated in several metabolism pathways, including choline, tryptophan, histidine, and nicotinate and nicotinamide metabolism, and among them, N1-methyl-4-pyridone-3-carboxamide, 5’-methylthioadenosine, and kynurenic acid were significantly associated with both maternal FPG and fetal growth. In conclusion, serum and AF metabolic profiles were remarkably altered in response to GDM. N1-Methyl-4-pyridone-3-carboxamide, 5’-methylthioadenosine, and kynurenic acid have the potential to be taken as biomarkers for maternal–fetal health status of GDM. The common and inter-related differential metabolites both in the serum and AF implied the feasibility of predicting fetal health outcomes via detecting the metabolites in maternal serum exposed to GDM.
The study was designed to develop and validate the nutrition literacy assessment instrument for pregnant women in China (NLAI-P). The dimension, components and questions of NLAI-P were identified via literature review and expert consultation. A panel of experts evaluated the content validity. The construct validity was evaluated by using the exploratory factor analyses (EFA) and confirmatory factor analyses (CFA). Cronbach’s α coefficient and split-half reliability were applied for examining the reliability. The NLAI-P was divided into 3 dimensions including knowledge, behavior and skill dimension. Findings showed NLAI-P possessed the satisfactory content validity (content validity index = 0.98, content validity ratio = 0.97), acceptable construct validity (χ2/df = 1.82, GFI = 0.86, AGFI = 0.84, RMSEA = 0.046) and good reliability (Cronbach’s α coefficient = 0.82). The average scores of NLAI-P were 46.59 ± 9.27. With the adjustment of confounding factors, education level presented a significantly positive correlation with NLAI-P scores. In conclusion, NLAI-P were valid and reliable to inspect NL level of pregnant women in China. Poor NL was prevalent among Chinese pregnant women. Based on the education level, taking targeted propaganda and education measures would achieve the optimal effect. NLAI-P can be applied as the tool for monitoring and assessing NL of pregnant women, and facilitate the designation of targeted interventions policies.
Scope Previously, the metabolic benefits of goat milk consumption in high‐fat diet‐fed rats are demonstrated. However, the effects are only reported in one animal model and the involvement of gut microbiota is not investigated. The aim of this study is to investigate the effects of goat milk consumption on glucose homeostasis and gut microbiota in streptozocin (STZ)‐induced diabetic rats. Methods and Results STZ‐induced diabetic rats are fed with three dosages of goat milk: 2.5, 5, and 10 g kg−1. Parameters related to glucose homeostasis, hepatic and skeletal muscle AMP‐activated protein kinase (AMPK) activation, and gut microbiota are investigated. The dose of 10 g kg−1 exerts more metabolic benefits. Goat milk consumption improves fasting glucose levels, glucose tolerance, insulin sensitivity, and promotes hepatic and skeletal muscle AMPK activation in STZ‐injected diabetic rats. Goat milk modulates gut microbiota, increases the relative abundance of Lactobacillus, and augments levels of propionic and butyric acids. Conclusion This study demonstrates the metabolic benefits of goat milk consumption in STZ‐induced diabetic rats, which is consistent with the previous observations in high‐fat diet‐induced diabetic rats. Furthermore, this study elucidates the modulation of gut microbiota by goat milk, which likely mediates the metabolic effects of goat milk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.