P3N-PIPO (P3 N-terminal fused with Pretty Interesting Potyviridae ORF), the movement protein of potyviruses, is expressed as a translational fusion with the N-terminus of P3 in potyviruses. As reported in previous studies, P3N-PIPO is expressed via transcriptional slippage at a conserved G2A6 slippery site in the genus Potyvirus. However, it is still unknown whether a similar expression mechanism of P3N-PIPO is used in the other genera of the family Potyviridae. Moreover, due to the extremely low expression level of P3N-PIPO in natural virus-infected plants, the peptides spanning the slippery site which provide direct evidence of the slippage at the protein level, have not been identified yet. In this study, a potato virus X (PVX)-based expression vector was utilized to investigate the expression mechanism of P3N-PIPO. A high expression level of the P3N-PIPO(WT) of turnip mosaic virus (TuMV, genus Potyvirus) was observed based on the PVX expression vector. For the first time, we successfully identified the peptides of P3N-PIPO spanning the slippery site by mass spectrometry. Likewise, the P3N-PIPO(WT) of wheat yellow mosaic virus (WYMV, genus Bymovirus) was also successfully expressed using the PVX expression vector. Integrated proteome and transcriptome analyses revealed that WYMV P3N-PIPO was expressed at the conserved G2A6 site through transcriptional slippage. Moreover, as revealed by mutagenesis analysis, Hexa-adenosine of the G2A6 site was important for the frameshift expression of P3N-PIPO in WYMV. According to our results, the PVX-based expression vector might be used as an excellent tool to study the expression mechanism of P3N-PIPO in Potyviridae. To the best of our knowledge, this is the first experimental evidence for the expression mechanism of P3N-PIPO in the genus Bymovirus, the only genus comprising bipartite virus species in the family Potyviridae.
Similarly to other potyvirids, the bymovirus wheat yellow mosaic virus (WYMV) encodes a P3N-PIPO protein that is expressed by frameshifting occurring within the open reading frame of the P3 protein. P3N-PIPO is known to be essential for the cell-to-cell movement of several potyviruses, but this has not yet been confirmed for the WYMV. Here, we show that the WYMV P3N-PIPO protein influences disease symptom formation. Infection of Nicotiana benthamiana plants with a potato virus X (PVX)-based vector carrying the WYMV P3N-PIPO gene induced more severe disease symptoms and resulted in higher virus accumulation levels than did infection with PVX lacking the P3N-PIPO gene. N. benthamiana P3N-PIPO-interacting proteins were identified through co-immunoprecipitation (Co-IP) coupled with LC-MS/MS (mass spectrometry), and the interaction between P3N-PIPO and the N. benthamiana receptor-like kinase NbRLK6 was further verified by Co-IP and bimolecular fluorescence complementation (BiFC) of transiently-expressed proteins. Furthermore, our investigation showed that the disease symptom severity and accumulation level of PVX-P3N-PIPO were decreased in N. benthamiana plants when NbRLK6 expression was reduced by tobacco rattle virus-induced gene silencing.
Soybean yellow common mosaic virus (SYCMV), a positive sense ssRNA virus classified in the genus Sobemovirus, was first reported and characterized in Korea (Nam et al., 2012). Currently, its only known host is soybean (Nam et al., 2012) on which it causes bright yellow mosaic and crinkling of the leaves (Lim et al., 2016). During a field survey in July 2019, bright yellow mosaic and mild crinkling symptoms were observed on soybean leaves (cv. Zhonghuang 13) in the Hubei province of China. To identify the possible pathogen(s) associated to the disease symptoms, leaves from five symptomatic plants were collected, pooled and total RNA was extracted using TRIzol® Reagent (Invitrogen, CA, USA). 10 μg of the total RNA was purified via magnetic beads (Thermo Fischer Scientific, USA) and a TruSeq RNA Sample Prep Kit (Illumina, San Diego, CA, USA) was then used to construct an RNA sequencing library. Transcriptome sequencing was performed on an Illumina HiSeq 4000 (LC Sciences, USA). The average insert size for the paired-end library was 300 ± 50 bp. After quality control, a total of 47.5 million clean reads were obtained and assembled using the Trinity software (version 2.8.5). The assembled contigs were searched against NCBI virus RefSeqs (ftp://ftp.ncbi.nlm.nih.gov/refseq/release/viral) by the BLASTx algorithm with a cutoff E value of ≤10-5. 12 contigs sized from 3,421 to 4,093 bp were found to share a sequence identity of 77.5%-94.1% with SYCMV isolates from Japan (LC332541) and South Korea (JF495127.1). No other virus matches were identified. The largest contig (4,093 bp, MT816507) covers 99% of the expected complete genome of SYCMV (4,121 bp, KX096577). To verify the accuracy of the sequence assembled, RT-PCR-Sanger sequencing was performed on a single field plant sample using primers designed for SYCMV (Forward, 5′-GAACAAAGAGTCTGGATCTT-3′; Reverse, 5′-TCCTTCCAAAACCTCGCGGG-3′). The sequence of the amplicon (3854 bp, MT997092) exhibited an identity of 99.9% to the HTS-derived SYCMV contig sequence. Phylogenetic analysis of the amplicon sequence revealed that the SYCMV isolate from China formed a distinct branch in the tree (Fig. S1). Sap from symptomatic field plants was used to mechanically inoculate two soybean cultivars (Jiunong 9 and Kefeng 1, 10 plants per cultivar), and leaves inoculated with phosphate buffer saline (PBS, 0.01 M, pH 7.5) served as a control (3 plants per cultivar). All but the control plants developed systemic bright yellow mosaic symptoms 10 days after inoculation (Fig. S2A). The infection of the soybean plants with SYCMV was confirmed by RT-PCR with the newly designed primers for SYCMV (Forward, 5′- CCTACAGGCATTGGTTTCGT-3′; Reverse, 5′-CGTGAGGTTCTTGCTTCACA-3′, anticipated amplicon size: 2,210 bp) (Fig. S2B) and by amplicon sequencing (100% sequence identity with MT9979092). In addition, the infection was further confirmed by immuno-blotting using an antibody against SYCMV coat protein (synthesized by GenScript, USA) (Fig. S2C). Together, the results demonstrate that SYCMV is the causal agent of the bright yellow mosaic symptoms in soybean observed in the field. To the best of our knowledge, this is the first report of SYCMV on soybean in China. These findings shall not only alert local growers to a potential new threat to soybean production in their region, but also provide new insights on the transmission, epidemiology and pathological properties of SYCMV in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.