In this study, we aimed to use 3T magnetic resonance imaging (MRI), which is clinically available, to determine the extracellular pH (pHe) of liver tumors and prospectively evaluate the ability of chemical exchange saturation transfer (CEST) MRI to distinguish between benign and malignant liver tumors. Methods: Different radiofrequency irradiation schemes were assessed for ioversol-based pH measurements at 3T. CEST effects were quantified in vitro using the asymmetric magnetization transfer ratio (MTRasym) at 4.3 ppm from the corrected Z spectrum. Generalized ratiometric analysis was conducted by rationing resolved ioversol CEST effects at 4.3 ppm at a flip angle of 60 and 350°. Fifteen patients recently diagnosed with hepatic carcinoma and five patients diagnosed with hepatic hemangioma [1 male; mean age, 48.6 (range, 37-59) years] were assessed. Results: By conducting dual-power CEST MRI, the pH of solutions was determined to be 6.0-7.2 at 3T in vitro. In vivo, ioversol signal intensities in the tumor region showed that the extracellular pH in hepatic carcinoma was acidic(mean ± standard deviation, 6.66 ± 0.19), whereas the extracellular pH was more physiologically neutral in hemangioma (mean ± standard deviation, 7.34 ± 0.09).The lesion size was similar between CEST pH MRI and T2-weighted imaging. Conclusion: dual-power CEST MRI can detect extracellular pH in human liver tumors and can provide molecular-level diagnostic tools for differentiating benign and malignant liver tumors at 3T.
Dysfunction of the glymphatic system may play a significant role in the development of neurodegenerative diseases. However, in vivo imaging of the glymphatic system is challenging. In this study, we describe an unconventional MRI method for imaging the glymphatic system based on chemical exchange saturation transfer, which we tested in an in vivo porcine model of impaired glymphatic function. The blood, lymph, and cerebrospinal fluid (CSF) from one pig were used for testing the MRI effect in vitro at 7 Tesla (T). Unilateral deep cervical lymph node ligation models were then performed in 20 adult male Sprague−Dawley rats. The brains were scanned in vivo dynamically after surgery using the new MRI method. Behavioral tests were performed after each scanning session and the results were tested for correlations with the MRI signal intensity. Finally, the pathological assessment was conducted in the same brain slices. The special MRI effect in the lymph was evident at about 1.0 ppm in water and was distinguishable from those of blood and CSF. In the model group, the intensity of this MRI signal was significantly higher in the ipsilateral than in the contralateral hippocampus. The correlation between the signal abnormality and the behavioral score was significant (Pearson's, R 2 = 0.9154, p < 0.005). We conclude that the novel MRI method can visualize the glymphatic system in vivo.
Amyloid-β (Aβ) deposits and some proteins play essential roles in the pathogenesis of Alzheimer's disease (AD). Amide proton transfer (APT) imaging, as an imaging modality to detect tissue protein, has shown promising features for the diagnosis of AD disease. In this study, we chose 10 AD model rats as the experimental group and 10 sham-operated rats as the control group. All the rats underwent a Y-maze test before APT image acquisition, using saturation with frequency alternating RF irradiation (APT SAFARI) method on a 7.0 T animal MRI scanner. Compared with the control group, APT (3.5 ppm) values of brain were significantly reduced in AD models (p < 0.002). The APT SAFARI imaging is more significant than APT imaging (p < 0.0001). AD model mice showed spatial learning and memory loss in the Y-maze experiment. In addition, there was significant neuronal loss in the hippocampal CA1 region and cortex compared with sham-operated rats. In conclusion, we demonstrated that APT imaging could potentially provide molecular biomarkers for the non-invasive diagnosis of AD. APT SAFARI MRI could be used as an effective tool to improve the accuracy of diagnosis of AD compared with conventional APT imaging.
A reliable and reproducible detection of Aβ deposits would be beneficial for the early diagnosis of Alzheimer's disease (AD). In the present study, the feasibility of applying chemical exchange saturation transfer (CEST) for Aβ deposit detection using angiopep-2 as a probe was evaluated, and it was demonstrated that CEST could detect angiopep-2 and Aβ-angiopep-2 aggregates in vitro. Furthermore, APP/PS1 mice injected with angiopep-2 exhibited a significantly higher in vivo CEST effect when compared with controls. The distribution of Aβ deposits detected by CEST imaging was consistent with the histological staining results. The present study is the first to report a reliable exogenous CEST probe to noninvasively evaluate Aβ deposits in APP/PS1 mice. Furthermore, these results demonstrate the potential for clinical AD diagnosis and Aβ-targeted drug therapy assessment using CEST imaging with the angiopep-2 probe.
Background: Encephalitis is a common central nervous system inflammatory disease that seriously endangers human health owing to the lack of effective diagnostic methods, which leads to a high rate of misdiagnosis and mortality. Glutamate is implicated closely in microglial activation, and activated microglia are key players in encephalitis. Hence, using glutamate chemical exchange saturation transfer (GluCEST) imaging for the early diagnosis of encephalitis holds promise. Methods: The sensitivity of GluCEST imaging with different concentrations of glutamate and other major metabolites in the brain was validated in phantoms. Twenty-seven Sprague-Dawley (SD) rats with encephalitis induced by Staphylococcus aureus infection were used for preclinical research of GluCEST imaging in a 7.0-Tesla scanner. For the clinical study, six patients with encephalitis, six patients with lacunar infarction, and six healthy volunteers underwent GluCEST imaging in a 3.0-Tesla scanner. Results: The number of amine protons on glutamate that had a chemical shift of 3.0 ppm away from bulk water and the signal intensity of GluCEST were concentrationdependent. Under physiological conditions, glutamate is the main contributor to the GluCEST signal. Compared with normal tissue, in both rats and patients with encephalitis, the encephalitis areas demonstrated a hyper-intense GluCEST signal, while the lacunar infarction had a decreased GluCEST signal intensity. After intravenous immunoglobulin therapy, patients with encephalitis lesions showed a decrease in GluCEST signal, and the results were significantly different from the pre-treatment signal (1.34 ± 0.31 vs 5.0 ± 0.27%, respectively; p = 0.000).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.