In this study, polyethyleneimine was combined with magnetic Fe3O4 nanoparticles through the bridging of carboxyl-functionalized ionic liquid, and laccase was loaded onto the carrier by Cu2+ chelation to achieve laccase immobilization (MCIL–PEI–Cu–lac). The carrier was characterized by Fourier transform infrared spectroscopy, scanning electron microscope, thermogravimetric analysis, X-ray diffraction analysis, magnetic hysteresis loop and so on. MCIL–PEI–Cu–lac has good immobilization ability; its loading and activity retention could reach 52.19 mg/g and 91.65%, respectively. Compared with free laccase, its thermal stability and storage stability have been significantly improved, as well. After 6 h of storage at 60 °C, 51.45% of the laccase activity could still be retained, and 81.13% of the laccase activity remained after 1 month of storage at 3 °C. In the pollutants removal test, the removal rate of 2,4-dichlorophenol (10 mg/L) by MCIL–PEI–Cu–lac could reach 100% within 10 h, and the removal efficiency could still be maintained 60.21% after repeated use for 8 times. In addition, MCIL–PEI–Cu–lac also has a good removal effect on other phenolic pollutants (such as bisphenol A, phenol, 4-chlorophenol, etc.). Research results indicated that an efficient strategy for laccase immobilization to biodegrade phenolic pollutants was developed.
Candidarugosa lipase (CRL) was activated with surfactants (sodium dodecyl sulfate [SDS]) and covalently immobilized onto a nanocomposite (Fe3O4-CS-DAC) fabricated by combining magnetic nanoparticles Fe3O4 with chitosan (CS) using polysaccharide macromolecule dialdehyde cellulose (DAC) as the cross-linking agent. Fourier transform infrared spectroscopy, transmission electron microscope, thermogravimetric analysis, and X-ray diffraction characterizations confirmed that the organic–inorganic nanocomposite support modified by DAC was successfully prepared. Enzymology experiments confirmed that high enzyme loading (60.9 mg/g) and 1.7 times specific enzyme activity could be obtained under the optimal immobilization conditions. The stability and reusability of immobilized CRL (Fe3O4-CS-DAC-SDS-CRL) were significantly improved simultaneously. Circular dichroism analysis revealed that the active conformation of immobilized CRL was maintained well. Results demonstrated that the inorganic–organic nanocomposite modified by carbohydrate polymer derivatives could be used as an ideal support for enzyme immobilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.