Abstract-Wireless sensor networks are often designed to perform two tasks: sensing a physical field and transmitting the data to end-users. A crucial design aspect of a WSN is the minimization of the overall energy consumption. Previous researchers aim at optimizing the energy spent for the communication, while mostly ignoring the energy cost of sensing. Recently, it has been shown that considering the sensing energy cost can be beneficial for further improving the overall energy efficiency. More precisely, sparse sensing techniques were proposed to reduce the amount of collected samples and recover the missing data using data statistics. While the majority of these techniques use fixed or random sampling patterns, we propose adaptively learning the signal model from the measurements and using the model to schedule when and where to sample the physical field. The proposed method requires minimal on-board computation, no inter-node communications, and achieves appealing reconstruction performance. With experiments on real-world datasets, we demonstrate significant improvements over both traditional sensing schemes and the state-of-the-art sparse sensing schemes, particularly when the measured data is characterized by a strong intra-sensor (temporal) or inter-sensors (spatial) correlation.Index Terms-Wireless sensor networks, sparse sensing, adaptive sampling scheduling, compressive sensing, energy efficiency.
In wireless sensor networks (WSNs), the base station (BS) is a critical sensor node whose failure causes severe data losses. Deploying multiple fixed BSs improves the robustness, yet requires all BSs to be installed with large batteries and large energy-harvesting devices due to the high energy consumption of BSs. In this paper, we propose a scheme to coordinate the multiple deployed BSs such that the energy supplies required by individual BSs can be substantially reduced. In this scheme, only one BS is selected to be active at a time and the other BSs act as regular sensor nodes. We first present the basic architecture of our system, including how we keep the network running with only one active BS and how we manage the handover of the role of the active BS. Then, we propose an algorithm for adaptively selecting the active BS under the spatial and temporal variations of energy resources. This algorithm is simple to implement but is also asymptotically optimal under mild conditions. Finally, by running simulations and real experiments on an outdoor testbed, we verify that the proposed scheme is energy-efficient, has low communication overhead and reacts rapidly to network changes.
Energy efficiency of wireless sensor networks (WSNs) can be improved by moving base stations (BSs), as this scheme evenly distributes the communication load in the network. However, physically moving the BSs is complicated and costly. In this paper, we propose a new scheme: virtually moving the BSs. We deploy an excessive number of BSs and adaptively re-select a subset of active BSs so as to emulate the physical movement. Beyond achieving high energy-efficiency, this scheme obviates the difficulties associated with physically moving the BSs.The challenges are (i) that the energy efficiency of BSs should be considered as well, in addition to that of the sensor nodes and (ii) that the number of candidate subset of active BSs is exponential with the number of BSs. We show that scheduling the virtual movement of BSs is NP-hard. Then, we propose a polynomial-time algorithm that is guaranteed under mild conditions to achieve a lifetime longer than 62% of the optimal one. In practice, as verified through extensive numerical simulations, the lifetime achieved by the proposed algorithm is always very close to the optimum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.