We provide both empirical and theoretical insights to demystify the gravity well phenomenon in the optimization landscape. We start from describe the problem setup and theoretical results (an escape time lower bound) of the Softmax Gravity Well (SGW) in the literature. Then we move toward the understanding of a recent observation called ASR gravity well. We provide an explanation of why normal distribution with high variance can lead to suboptimal plateaus from an energy function point of view. We also contribute to the empirical insights of curriculum learning by comparison of policy initialization by different normal distributions. Furthermore, we provide the ASR escape time lower bound to understand the ASR gravity well theoretically. Future work includes more specific modeling of the reward as a function of time and quantitative evaluation of normal distribution’s influence on policy initialization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.