Genome-wide association studies (GWASs) have reproducibly associated variants within intergenic regions of 1p36.12 locus with osteoporosis, but the functional roles underlying these noncoding variants are unknown. Through an integrative functional genomic and epigenomic analyses, we prioritized rs6426749 as a potential causal SNP for osteoporosis at 1p36.12. Dual-luciferase assay and CRISPR/Cas9 experiments demonstrate that rs6426749 acts as a distal allele-specific enhancer regulating expression of a lncRNA (LINC00339) (∼360 kb) via long-range chromatin loop formation and that this loop is mediated by CTCF occupied near rs6426749 and LINC00339 promoter region. Specifically, rs6426749-G allele can bind transcription factor TFAP2A, which efficiently elevates the enhancer activity and increases LINC00339 expression. Downregulation of LINC00339 significantly increases the expression of CDC42 in osteoblast cells, which is a pivotal regulator involved in bone metabolism. Our study provides mechanistic insight into how a noncoding SNP affects osteoporosis by long-range interaction, a finding that could indicate promising therapeutic targets for osteoporosis.
Background Childhood obesity is reported to be associated with the risk of many diseases in adulthood. However, observational studies cannot fully account for confounding factors. We aimed to systematically assess the causal associations between childhood body mass index (BMI) and various adult traits/diseases using two-sample Mendelian randomization (MR). Methods After data filtering, 263 adult traits genetically correlated with childhood BMI (P < 0.05) were subjected to MR analyses. Inverse-variance weighted, MR-Egger, weighted median, and weighted mode methods were used to estimate the causal effects. Multivariable MR analysis was performed to test whether the effects of childhood BMI on adult traits are independent from adult BMI. Results We identified potential causal effects of childhood obesity on 60 adult traits (27 disease-related traits, 27 lifestyle factors, and 6 other traits). Higher childhood BMI was associated with a reduced overall health rating (β = − 0.10, 95% CI − 0.13 to − 0.07, P = 6.26 × 10−11). Specifically, higher childhood BMI was associated with increased odds of coronary artery disease (OR = 1.09, 95% CI 1.06 to 1.11, P = 4.28 × 10−11), essential hypertension (OR = 1.12, 95% CI 1.08 to 1.16, P = 1.27 × 10−11), type 2 diabetes (OR = 1.36, 95% CI 1.30 to 1.43, P = 1.57 × 10−34), and arthrosis (OR = 1.09, 95% CI 1.06 to 1.12, P = 8.80 × 10−9). However, after accounting for adult BMI, the detrimental effects of childhood BMI on disease-related traits were no longer present (P > 0.05). For dietary habits, different from conventional understanding, we found that higher childhood BMI was associated with low calorie density food intake. However, this association might be specific to the UK Biobank population. Conclusions In summary, we provided a phenome-wide view of the effects of childhood BMI on adult traits. Multivariable MR analysis suggested that the associations between childhood BMI and increased risks of diseases in adulthood are likely attributed to individuals remaining obese in later life. Therefore, ensuring that childhood obesity does not persist into later life might be useful for reducing the detrimental effects of childhood obesity on adult diseases.
BackgroundTriple-negative breast cancer (TNBC) is a particular breast cancer subtype with poor prognosis due to its aggressive biological behavior and lack of targets for therapy. This study aimed to explore the expression profile and potential function of lncRNAs in TNBC through bioinformatic methods.MethodsTwo microarrays of TNBC were obtained from the Gene Expression Omnibus database. Differentially expressed lncRNAs and mRNAs were screened out and the expressions of top lncRNAs and overlapping lncRNAs were validated using data from The Cancer Genome Atlas database. The co-expression analysis of lncRNAs and mRNAs was conducted using R software and functional enrichment analysis for was performed by Metascape. Kaplan–Meier Plotter was used for survival analysis.ResultsA total of 1034 dysregulated lncRNAs were found in the two microarrays, and there were 8 overlapped lncRNAs. Among them, 537 lncRNAs were significantly correlated with 451 protein-coding genes (PCGs). The co-expressed PCGs were mainly enriched in terms including cell division, cell cycle, and protein/DNA binding, and were involved in pathways in cancer and other pathways such as PI3K-Akt, MAPK, ErbB and p53 signaling pathways. Hub-genes in the co-expression network were identified, and 7 of them were associated with relapse-free survival of TNBC (MAGI2-AS3: HR = 0.51; GGTA1P: HR = 0.54; NAP1L2: HR = 0.59; CRABP2: HR = 0.41; SYNPO2: HR = 0.50; MKI67: HR = 2.23; COL4A6: HR = 1.91; all P < 0.05).ConclusionsNumerous lncRNAs were dysregulated in TNBC, and many of them are possibly involved in cancer biology. Several of these lncRNAs were associated with of TNBC prognosis, which can be promising biomarkers.Electronic supplementary materialThe online version of this article (10.1186/s12935-018-0598-8) contains supplementary material, which is available to authorized users.
Taking together from both physiological and genetic levels, we suggest that FGF21 is inversely associated with regional BMD. And we haven't observed sex-specific effect in this study.
We aimed to summarize the results of genetic association studies for obesity and provide a comprehensive annotation of all susceptibility single nucleotide polymorphisms (SNPs). A total of 72 studies were summarized, resulting in 90,361 susceptibility SNPs (738 index SNPs and 89,623 linkage disequilibrium SNPs). Over 90% of the susceptibility SNPs are located in non-coding regions, and it is challenging to understand their functional significance. Therefore, we annotated these SNPs by using various functional databases. We identified 24,623 functional SNPs, including 4 nonsense SNPs, 479 missense SNPs, 399 untranslated region SNPs which might affect microRNA binding, 262 promoter and 5,492 enhancer SNPs which might affect transcription factor binding, 7 splicing sites, 76 SNPs which might affect gene methylation levels, 1,839 SNPs under natural selection and 17,351 SNPs which might modify histone binding. Expression quantitative trait loci analyses for functional SNPs identified 98 target genes, including 69 protein coding genes, 27 long non-coding RNAs and 3 processed transcripts. The percentage of protein coding genes that could be correlated with obesity-related pathways directly or through gene-gene interaction is 75.36 (52/69). Our results may serve as an encyclopaedia of obesity susceptibility SNPs and offer guide for functional experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.