The Qinghai-Tibet Plateau (QTP) is a biodiversity hotspot, resulting from its geological history, contemporary environment and isolation. Uplift of the QTP and Quaternary climatic oscillations are hypothesised to have influenced the genetic diversity, population structure and dynamics of all QTP endemic species. In this study, we tested this hypothesis by assaying variation at two mitochondrial DNA regions (cytochrome b and control region) and at 12 microsatellite loci of seven populations of the endemic fish, Schizothorax o’connori from the Yarlung Tsangpo River (YLTR) on the QTP. Analyses revealed one group of six populations to the west, above the Yarlung Tsangpo Grand Canyon (YTGC), and a second group to the east below the YTGC. Estimates of the timing of this east-west split indicate that these groups represent evolutionarily significant units that have evolved separately and rapidly in the middle Pleistocene, at the time of the Kunlun-Huanghe Movement A Phase and the Naynayxungla glaciation. Population dynamic analyses indicate that S. o’connori experienced a pronounced late Pleistocene expansion during the last interglacial period. The results of this study support the hypotheses that the QTP uplift and Quaternary climatic oscillations have played important roles in shaping the population genetics and dynamics of this endemic fish.
The phylogeography of
Schizothorax waltoni
, an endemic and endangered tetraploid schizothoracine fish in the Yarlung Tsangpo River (YLTR) on southern margin of Qinghai-Tibet Plateau (QTP), was investigated using two mitochondrial DNA regions and eleven microsatellite loci. Analyses of concatenated sequences of cytochrome
b
(1141 bp) and the control region (712 bp) revealed high haplotype diversity and moderate nucleotide diversity. High genetic diversity was observed based on microsatellite variation. Both mtDNA and microsatellite analyses revealed significant genetic differentiation between the eastern population (Mainling) and the other four populations to the west, and non-significant genetic differentiation amongst the three central populations in the west. Significant genetic differentiation was observed between the western population (Shigatse) and the three central populations based on microsatellite analyses alone. Bayesian skyline plot analyses showed that
S. waltoni
experienced a pronounced population expansion 0.05 to 0.10 Ma. Hierarchical structure analyses of microsatellite data indicated that
S. waltoni
could be split into three groups (western, central and eastern YLTR). The results indicate that three management units should be considered for
S. waltoni
. Our findings highlight the need for the conservation and effective management of
S. waltoni
, which is a key member of the endemic and highly threatened fishes of the QTP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.