Recently, a scheme for deterministic remote preparation of arbitrary multi-qubit equatorial states was proposed by Wei et al. [Quantum Inf. Process.
17 70 (2018)]. It is worth mentioning that the construction of mutual orthogonal measurement basis plays a key role in quantum remote state preparation. In this paper, a simple and feasible remote preparation of arbitrary n-qubit equatorial states scheme is proposed. In our scheme, the success probability will reach unit. Moreover, there are no coefficient constraint and auxiliary qubits in this scheme. It means that the success probabilities are independent of the coefficients of the entangled channel. The advantage of our scheme is that the mutual orthogonal measurement basis is devised. To accomplish the quantum remote state preparation (RSP) schemes, some new sets of mutually orthogonal measurement basis are introduced.
In this paper, two new efficient multiparty quantum direct secret sharing schemes are proposed via a six-particle GHZ state and Bell measurements. In the first scheme, based on the theory of security cryptanalysis, the secret message of the sender is directly encoded into the transmitted particles, and all the agents can obtain their information by performing bell measurement on the received particles, and then cooperate to recover the information of the sender. In the second scheme, we define a new secret shared coding method by performing local unitary operations on the transmitted particles, then agents perform Bell measurements on their own particles respectively, and feedback the measurement to the dealer. If the agent’s results are matched with the previous coding method, the protocol will work out. In addition, the proposed two schemes have the following common advantages: the sender can send all prepared particles to the receiver, and can send an arbitrary key to the receiver, rather than a random secret key; the proposed schemes do not need to insert any detection sets to detect eavesdropping and can resist both existing attacks and spoofing attacks by dishonest agents. The sender need not to retain any photons, so the sender’s quantum memory could be omitted here.
An optimal scheme is presented for the quantum teleportation of an arbitrary [Formula: see text]-particle generalized Bell-type state. In this paper, we have discussed three examples of two-particle, three-particle, and four-particle generalized Bell-type state in detail. Not only that, we have also analyzed the specific optimization process of quantum teleportation. Compared with previous schemes, our scheme has less quantum cost and transmission complexity due to the optimized quantum channel and operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.