Nonfullerene acceptors (MQ3, MQ5, MQ6) are synthesized using asymmetric and symmetric ladder‐type heteroheptacene cores with selenophene heterocycles. Although MQ3 and MQ5 are constructed with the same number of selenophene heterocycles, the heteroheptacene core of MQ5 is end‐capped with selenophene rings while that of MQ3 is flanked with thiophene rings. With the enhanced noncovalent interaction of O⋅⋅⋅Se compared to that of O⋅⋅⋅S, MQ5 shows a bathochromically shifted absorption band and greatly improved carrier transport, leading to a higher power conversion efficiency (PCE) of 15.64 % compared to MQ3, which shows a PCE of 13.51 %. Based on the asymmetric heteroheptacene core, MQ6 shows an improved carrier transport induced by the reduced π–π stacking distance, related with the increased dipole moment in comparison with the nonfullerene acceptors based on symmetric cores. MQ6 exhibits a PCE of 16.39 % with a VOC of 0.88 V, a FF of 75.66 %, and a JSC of 24.62 mA cm−2.
Intermolecular interaction of nonfullerene acceptors (NFAs) is essential for controlling their photovoltaic performance. Fluorinated substituents attached at the end groups of NFAs can significantly affect their frontier molecular orbitals and intermolecular interactions. Herein, four heteroheptacene‐based NFAs (ML‐1F, ML‐2FO, ML‐2FM, and ML‐2FP) with different fluorinated end groups are designed, synthesized, and characterized. The impact of the end group on the crystal structures, optical, electrochemical, charge transport, and photovoltaic properties of these NFAs are systematically studied. In comparison with the acceptor with monofluorinated end groups, the acceptors with difluorinated end groups show reduced bandgaps and downshifted energy levels. Single‐crystal results demonstrate that the intermolecular interactions including the π–π stacking distance and molecular aggregation behavior of these acceptors are also affected by the variation of end groups thereby leading to the acceptors with varied charge transport properties. In combination with the polymer donor of PM6, ML‐2FM exhibits the highest power conversion efficiency (PCE) of 15.33% with a short‐circuit current density of 23.73 mA cm−2 and a fill factor of 0.734. However, ML‐2FP displays an inferior PCE of 10.48% which is lower than that of ML‐1F (11.41% PCE). The results show that the fluorine substituent number and position of end group are of vital importance in determining their photovoltaic performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.