In image classification, Convolutional Neural Network(CNN) models have achieved high performance with the rapid development in deep learning. However, some categories in the image datasets are more difficult to distinguished than others. Improving the classification accuracy on these confused categories is benefit to the overall performance. In this paper, we build a Confusion Visual Tree(CVT) based on the confused semantic level information to identify the confused categories. With the information provided by the CVT, we can lead the CNN training procedure to pay more attention on these confused categories. Therefore, we propose Visual Tree Convolutional Neural Networks(VT-CNN) based on the original deep CNN embedded with our CVT. We evaluate our VT-CNN model on the benchmark datasets CIFAR-10 and CIFAR-100. In our experiments, we build up 3 different VT-CNN models and they obtain improvement over their based CNN models by 1.36%, 0.89% and 0.64%, respectively.
No abstract
For deep CNN-based image classification models, we observe that confusions between classes with high visual similarity are much stronger than those where classes are visually dissimilar. With these unbalanced confusions, classes can be organized in communities, which is similar to cliques of people in the social network. Based on this, we propose a graph-based tool named "confusion graph" to quantify these confusions and further reveal the community structure inside the database. With this community structure, we can diagnose the model's weaknesses and improve the classification accuracy using specialized expert sub-nets, which is comparable to other state-of-the-art techniques. Utilizing this community information, we can also employ pre-trained models to automatically identify mislabeled images in the large scale database. With our method, researchers just need to manually check approximate 3% of the ILSVRC2012 classification database to locate almost all mislabeled samples.
Though it has been easier to build large face datasets by collecting images from the Internet in this Big Data era, the time-consuming manual annotation process prevents researchers from constructing larger ones, which makes the automatic cleaning of noisy labels highly desirable. However, identifying mislabeled faces by machine is quite challenging because the diversity of a person's face images that are captured wildly at all ages is extraordinarily rich. In view of this, we propose a graph-based cleaning method that mainly employs the community detection algorithm and deep CNN models to delete mislabeled images. As the diversity of faces is preserved in multiple large communities, our cleaning results have both high cleanness and rich data diversity. With our method, we clean the extremely large MS-Celeb-1M face dataset (approximately 10 million images with noisy labels) and obtain a clean version of it called C-MS-Celeb (6,464,018 images of 94,682 celebrities). By training a single-net model using our C-MS-Celeb dataset, without fine-tuning, we achieve 99.67% at Equal Error Rate on the LFW face recognition benchmark, which is comparable to other state-of-the-art results. This demonstrates the data cleaning positive effects on the model training. To the best of our knowledge, our C-MS-Celeb is the largest clean face dataset that is publicly available so far, which will benefit face recognition researchers.
Convolution neural network models are widely used in image classification tasks. However, the running time of such models is so long that it is not the conforming to the strict real-time requirement of mobile devices. In order to optimize models and meet the requirement mentioned above, we propose a method that replaces the fully-connected layers of convolution neural network models with a tree classifier. Specifically, we construct a Visual Confusion Label Tree based on the output of the convolution neural network models, and use a multi-kernel SVM plus classifier with hierarchical constraints to train the tree classifier. Focusing on those confusion subsets instead of the entire set of categories makes the tree classifier more discriminative and the replacement of the fully-connected layers reduces the original running time. Experiments show that our tree classifier obtains a significant improvement over the state-of-the-art tree classifier by 4.3% and 2.4% in terms of top-1 accuracy on CIFAR-100 and ImageNet datasets respectively. Additionally, our method achieves 124× and 115× speedup ratio compared with fullyconnected layers on AlexNet and VGG16 without accuracy decline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.