Introduction. Postoperative delirium can increase cognitive impairment and mortality in patients with Parkinson’s disease. The purpose of this study was to develop and internally validate a clinical prediction model of delirium after deep brain stimulation of the subthalamic nucleus in Parkinson’s disease under general anesthesia. Methods. We conducted a retrospective observational cohort study on the data of 240 patients with Parkinson’s disease who underwent deep brain stimulation of the subthalamic nucleus under general anesthesia. Demographic characteristics, clinical evaluation, imaging data, laboratory data, and surgical anesthesia information were collected. Multivariate logistic regression was used to develop the prediction model for postoperative delirium. Results. A total of 159 patients were included in the cohort, of which 38 (23.90%) had postoperative delirium. Smoking (OR 4.51, 95% CI 1.56–13.02, p < 0.01 ) was the most important risk factor; other independent predictors were orthostatic hypotension (OR 3.42, 95% CI 0.90–13.06, p = 0.07 ), inhibitors of type-B monoamine oxidase (OR 3.07, 95% CI 1.17–8.04, p = 0.02 ), preoperative MRI with silent brain ischemia or infarction (OR 2.36, 95% CI 0.90–6.14, p = 0.08 ), Hamilton anxiety scale score (OR 2.12, 95% CI 1.28–3.50, p < 0.01 ), and apolipoprotein E level in plasma (OR 1.48, 95% CI 0.95–2.29, p = 0.08 ). The area under the receiver operating characteristic curve (AUC) was 0.76 (95% CI 0.66–0.86). A nomogram was established and showed good calibration and clinical predictive capacity. After bootstrap for internal verification, the AUC was 0.74 (95% CI 0.66–0.83). Conclusion. This study provides evidence for the independent inducing factors of delirium after deep brain stimulation of the subthalamic nucleus in Parkinson’s disease under general anesthesia. By predicting the development of delirium, our model may identify high-risk groups that can benefit from early or preventive intervention.
Background: After deep brain stimulation (DBS), hiccups as a complication may lead to extreme fatigue, sleep deprivation, or affected prognosis. Currently, the causes and risk factors of postoperative hiccups are unclear. In this study, we investigated the risk factors for hiccups after DBS of the subthalamic nucleus (STN) for Parkinson’s disease (PD) under general anesthesia. Methods: We retrospectively included patients who underwent STN DBS in the study, and collected data of demographic characteristics, clinical evaluations, and medications. According to the occurrence of hiccups within seven days after operation, the patients were divided into a hiccups group and non-hiccups group. The potentially involved risk factors for postoperative hiccups were statistically analyzed by logistic regression analysis. Results: A total of 191 patients were included in the study, of which 34 (17.80%) had postoperative transient persistent hiccups. Binary univariate logistic regression analysis showed that male, higher body mass index (BMI), smoker, Hoehn and Yahr stage (off), preoperative use of amantadine, hypnotic, Hamilton anxiety scale and Hamilton depression scale scores, and postoperative limited noninfectious peri-electrode edema in deep white matter were suspected risk factors for postoperative hiccups (p < 0.1). In binary multivariate logistic regression analysis, male (compared to female, OR 14.00; 95% CI, 1.74–112.43), postoperative limited noninfectious peri-electrode edema in deep white matter (OR, 7.63; 95% CI, 1.37–42.37), preoperative use of amantadine (OR, 3.64; 95% CI, 1.08–12.28), and higher BMI (OR, 3.50; 95% CI, 1.46–8.36) were independent risk factors for postoperative hiccups. Conclusions: This study is the first report about the risk factors of hiccups after STN DBS under general anesthesia for PD patients. The study suggests that male, higher BMI, preoperative use of amantadine, and postoperative limited noninfectious peri-electrode edema in deep white matter are independent risk factors for postoperative hiccups of STN-DBS for PD patients. Most hiccups after STN-DBS for PD patients were transient and self-limiting.
IntroductionTraditional DBS is usually conducted under local anesthesia (LA) which is intolerable to some patients, DBS under general anesthesia (GA) was opted to extended surgical indication. This study aimed to compare the efficacy and safety of bilateral subthalamic deep brain stimulation (STN-DBS) for Parkinson’s disease (PD) under asleep and awake anesthesia state in 1-year postoperative follow-up.MethodsTwenty-one PD patients were assigned to asleep group and 25 patients to awake group. Patients received bilateral STN-DBS under different anesthesia state. The PD participants were interviewed and assessed preoperatively and at 1-year postoperative follow-up.ResultsAt 1-year follow-up, compared surgical coordinate in two groups, the left-side Y of asleep group showed more posterior than awake group (Y was-2.39 ± 0.23 in asleep group, −1.46 ± 0.22 in awake group, p = 0.007). Compared with preoperative OFF MED state, MDS-UPDRS III scores in OFF MED/OFF STIM state remained unchanged, while in OFF MED/ON STIM state were significantly improved in awake and asleep groups, yet without significant difference. Compared with preoperative ON MED state, MDS-UPDRS III scores in ON MED/OFF STIM, and ON MED/ON STIM state remained unchanged in both groups. In non-motor outcomes, PSQI, HAMD, and HAMA score significantly improved in asleep group compared to awake group at 1-year follow-up (PSQI, HAMD, and HAMA score in 1-year follow-up were 9.81 ± 4.43; 10.00 ± 5.80; 5.71 ± 4.75 in awake group, 6.64 ± 4.14; 5.32 ± 3.78; 3.76 ± 3.87 in asleep group, p = 0.009; 0.008; 0.015, respectively), while there was no significant difference in PDQ-39, NMSS, ESS, PDSS score, and cognitive function. Anesthesia methods was significantly associated with improvement of HAMA and HAMD score (p = 0.029; 0.002, respectively). No difference in LEDD, stimulation parameters and adverse events was observed between two groups.DiscussionAsleep STN-DBS may be considered a good alternative method for PD patients. It is largely consistent with awake STN-DBS in motor symptoms and safety. Yet, it showed higher improvement in terms of mood and sleep compared to awake group at 1-year follow-up.
Glioma stem cells (GSCs) have been associated with high heterogeneity, recurrence rate, and resistance to radiotherapy and chemotherapy of glioblastoma multiforme (GBM). As members of the Meprinassociated Traf homology (MATH) -Broad-complex, Tramtrack, and Bric-a-brac (BTB) protein family, both SPOPL and SPOP have been associated with cancer stem cells in various tumors. Although it has been established that SPOPL has a broader expression pro le than SPOP in the human brain, whether it plays an important role in GSCs remains unclear. In the present study, analysis of SPOPL expression in GSCs, glioma cell lines, and GBM clinical specimens showed that high SPOPL expression correlated with poor prognosis. Analysis of the biological function of SPOPL in GSCs showed that SPOPL promotes the proliferation, tumorigenic and self-renewal ability of GSCs and inhibits the differentiation potential of GSCs. RNA-seq revealed that SPOPL could affect the biological functions of GSCs through activation of the Notch signaling pathway. Overall, SPOPL represents a possible molecular target for GBM treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.