The brake pads of high-speed trains operate under complex and variable conditions, and the collected brake signals are easily affected by noise, making monitoring the health status of brake pads more difficult. A multi-representation adaptation network for online monitoring the health status of high-speed train brake pads, which are affected by noise under variable working conditions, is proposed in this study. First, a parameter-sharing deep residual network is used to extract the friction block features of the source and target domain data. Then, the features are mapped to different low-dimensional feature spaces through the inception adaptation module, and multiple representations are obtained. The network applies conditional maximum mean discrepancy to align representations of the source and target domains, thus learning multiple domain-invariant representations. Hence, the network acquires more knowledge of the friction block status and attenuates the interference of noise signals on the status monitoring. The friction block vibration data were collected from various brake disc speeds, and variable working condition-transfer experiments under the influence of noise were performed on the brake friction and bearing datasets. The results show that the proposed network outperforms other transfer methods, which can better extract and identify the status features of the friction block under the noise interference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.