Herein, we isolated Janthinobacterium svalbardensis F19 from sludge sediment. Strain F19 can simultaneously execute heterotrophic nitrification and aerobic denitrification under aerobic conditions. The organism exhibited efficient nitrogen removal at a C/N ratio of 2:1, with an average removal rate of 0.88 mg/L/h, without nitrite accumulation. At a C/N ratio of 2, an initial pH of 10.0, a culturing temperature of 25 °C, and sodium acetate as the carbon source, the removal efficiencies of ammonium, nitrate, nitrite, and hydroxylamine were 96.44%, 92.32%, 97.46%, and 96.69%, respectively. The maximum removal rates for domestic wastewater treatment for ammonia and total nitrogen were 98.22% and 92.49%, respectively. Gene-specific PCR amplification further confirmed the presence of napA, hao, and nirS genes, which may contribute to the heterotrophic nitrification and aerobic denitrification capacity of strain F19. These results indicate that this bacterium has potential for efficient nitrogen removal at low C/N ratios from domestic wastewater.
Background:
Exploring the mechanisms of valvular heart disease at the cellular level may be useful to identify new therapeutic targets; however, the comprehensive cellular landscape of nondiseased human cardiac valve leaflets remains unclear.
Methods:
The cellular landscapes of nondiseased human cardiac valve leaflets (5 aortic valves, 5 pulmonary valves, 5 tricuspid valves, and 3 mitral valves) from end-stage heart failure patients undergoing heart transplantation were explored using single-cell RNA sequencing. Bioinformatics was used to identify the cell types, describe the cell functions, and investigate cellular developmental trajectories and interactions. Differences among the 4 types of cardiac valves at the cellular level were summarized. Pathological staining was performed to validate the key findings of single-cell RNA sequencing. An integrative analysis of our single-cell data and published genome-wide association study-based and bulk RNA sequencing-based data provided insights into the cell-specific contributions to calcific aortic valve diseases.
Results:
Six cell types were identified among 128 412 cells from nondiseased human cardiac valve leaflets. Valvular interstitial cells were the largest population, followed by myeloid cells, lymphocytes, valvular endothelial cells, mast cells, and myofibroblasts. The 4 types of cardiac valve had distinct cellular compositions. The intercellular communication analysis revealed that valvular interstitial cells were at the center of the communication network. The integrative analysis of our single-cell RNA sequencing data revealed key cellular subpopulations involved in the pathogenesis of calcific aortic valve diseases.
Conclusions:
The cellular landscape differed among the 4 types of nondiseased cardiac valve, which might explain their differences in susceptibility to pathological remodeling and valvular heart disease.
Biological nitrification and denitrification play significant roles in nitrogen-associated biogeochemical cycles. However, our understanding of the spatial scales at which microbial communities act and vary is limited. We used gene-specific metagenomic PCR to explore changes in nitrifying and denitrifying microbial communities within pristine lake and its branches, where the ammonium and dissolved organic carbon (DOC) concentrations form a gradient. The biomarkers hydroxylamine oxidoreductase and nitrite reductase genes indicated that strong relationships exist between the diversities and community structures of denitrifiers and ammonium gradients. It showed that the Nitrosomonas oligotropha cluster dominates the nitrifying bacteria in low-nutrition environments, while a new Nitrosomonas ureae cluster accounted for nearly 80% of the nitrifying bacteria in high-nitrogen environments. The distribution and diversity of nirS/K-dependent denitrifiers in the various habitats were similar, but predominantly affiliated with unknown clusters. Moreover, the abundance of all the hao genes dramatically outnumbered that of nir genes. The relative abundance of hao was clearly higher during eutrophication (13.60%) than during oligotrophy (5.23%), whereas that of nirS showed opposite tendencies. Overall, this study provides valuable comparative insights into the shifts in nitrifying and denitrifying microbial populations in lake environments with ammonium gradients, suggesting that unique dominant denitrifiers probably play an important role in the nitrogen cycle.
Biofilms are used widely to remove nitrogen from wastewater; however, most biofilm carriers (i.e. polyurethane foam, PUF) are hydrophobic organic materials with millimetre-scale apertures, ineffective attachment, and unstable colonisation of microorganisms. To address these limitations, hydrophilic sodium alginate (SA) mixed with zeolite powder (Zeo) was crosslinked in PUF to form a micro-scale hydrogel (PAS) with a well-organised and reticular cellular structure. Scanning electron microscopy revealed that immobilised cells were entrapped in the interior of hydrogel filaments and rapidly formed a stable biofilm on the surface. The biofilm generated was 10.3-fold greater than the film developed on PUF. Kinetics and isotherm studies revealed that the as-developed carrier, because of the presence of Zeo, effectively improved the adsorption of NH4+–N by 53%. The PAS carrier achieved total nitrogen removal in excess of 86% for low carbon-to-nitrogen ratio wastewater treated for 30 d, indicating that this novel modification–encapsulation technology has potential for wastewater treatment.
Although numerous denitrifying bacteria have been isolated and characterized, their capacity is seriously compromised by traditional inoculant addition and environmental stress in open bioreactors for wastewater treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.