The microRNA miRNA-1225-5p (miR-1225) is known as an essential modulator of the development of multiple cancers and other biological reactions. However, the understanding of its contribution to pancreatic cancer (PC) is insufficient. The effects of miR-1225 on PC cell survival and tumorigenesis in vivo as well as on the modulation of cell apoptosis were investigated. The expression of miR-1225 was upregulated in 20 human LC samples from acute myeloid leukemia patients with adverse prognosis and poor responses to therapy as well as in several human PC cell lines, as compared to that in healthy tissues, normal tissues, and normal pancreatic cells. In contrast, Janus kinase 1 (JAK1) expression was downregulated in human-derived PC samples and PC cell lines. EdU staining demonstrated that the aberrant expression of miR-1225 impaired the proliferation and survival of these two PC cell lines. The depletion of miR-1225 expression increased the apoptosis of both PANC-1 and AsPC-1 cells, as revealed by the TdT-mediated dUTP nick end labeling (TUNEL) staining and flow cytometry results. The results of dual-luciferase reporter assay indicated that miR-1225 targeted the 3′-untranslated region of JAK1 for silencing. Silencing of JAK1 expression counteracted the suppressive influence of miR-1225 depletion in PC cells. Thus, these results offer an insight into the biological and molecular mechanisms underlying the development of PC and provide potential strategies for PC treatment.
Long non-coding RNAs (lncRNAs) are involved in developing hepatocellular carcinoma (HCC). The present study explored the role of lncRNA LINC01194, which is upregulated in HCC tissues and might be a vital regulator in HCC progression. Levels of LINC01194, microRNA (miR)-655-3p, and SMAD family member 5 (SMAD5) were assessed using reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). The bioactivity of Huh-7 cells was assessed using cell counting kit-8 and transwell assays and flow cytometry. Western blotting was conducted to measure the expression of invasion- and apoptosis-related proteins. The relationships between lncRNA LINC01194 and miR-655-3p, and miR-655-3p and SMAD5 were predicted using StarBase and TargetScan, and further verified using a dual-luciferase reporter assay. LINC01194 was overexpressed in HCC cells and in clinical samples. ILINC01194 silencing suppressed proliferation and migration; however, it promoted apoptosis in HCC cell lines. We also confirmed that miR-655-3p could bind to LINC01194, and miR-655-3p was downregulated in HCC. The upregulation of miR-655-3p suppressed HCC cell invasion and migration, and enhanced the number of apoptotic cells. SMAD5, which was overexpressed in HCC cell lines, was directly targeted by miR-655-3p. Therefore, LINC01194 promoted HCC development by decreasing miR-655-3p expression and may serve as a promising therapeutic target for HCC patients.
COBAS ver2. Result: Fifteen patients were enrolled. In ten patients whose EGFR mutation was detected in liquid biopsy, the original EGFR mutation (exon 19 del or L858R) was detected in all patients. The detection rate of T790M was lower than that of the original EGFR mutation in liquid biopsy compared to that in tissue re-biopsy. The detection of T790M in serum exhibited a higher specificity (67%) and positive predictive value (50%) than that in plasma (50% and 40%, respectively). The detection sensitivity was similar in plasma and serum. Nine patients were treated with osimertinib. The RR was 77.8% and DCR was 100%. One patient who presented a response was positive for T790M in liquid biopsy (both plasma and serum) and negative in tissue re-biopsy. Conclusion: We suggest serum samples to be more useful than plasma samples for determining the effectiveness of osimertinib against relapse tumor sites because they were more reliable in the detection of T790M mutation at the relapse tumor tissue sites. Repeated tests with different samples and different methods may improve accuracy of T790M detection and will lead to the maximum benefit for the patient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.