The copper end paste used in multilayer ceramic capacitors sintered in nitrogen atmosphere leads to carbon residues of organic vehicles, which leads to a reduction in electrode conductivity and high scrap rate. With an attempt to leave no residue in the sintering, the compatibility of solvents and thickeners should be improved because it has an important influence on the hierarchical volatilization and carbon residue of organic vehicles. In this work, the volatility of different solvents was compared, and several solvents were mixed in a definite proportion to prepare an organic vehicle with polyacrylate resins. The hierarchical volatility and solubility parameters of mixed solvents were effectively adjusted by changing proportions of different components. The thermogravimetric curves of resins and organic vehicles were measured by thermogravimetric analyzer, and the effect of solubility parameter on the dissolvability of resins in the solvent and the residual of organic vehicles were studied. Results showed that the hierarchical volatilization of solvents can be obtained by mixing different solvents; the intrinsic viscosity of the organic vehicle is higher, and the thermal decomposition residue of polyacrylate resins is lower when the solubility parameters of mixed solvents and polyacrylate resins are closer. The low residual sintering of organic vehicles can be achieved by using a mixed solvent with hierarchical volatility and approximate solubility parameters as resins.
The copper end paste used in multilayer ceramic capacitors sintered in nitrogen atmosphere will lead to carbon residue of organic vehicle, which will lead to the reduction of electrode conduc-tivity and high scrap rate. With an attempt to leave no residue in the sintering, the compatibility of solvents and thickeners should be improved because it has an important influence on the hi-erarchical volatilization and carbon residue of organic vehicles. In this work, the volatility of different solvents was compared and several solvents were mixed in a definite proportion to prepare an organic vehicle with polyacrylate resins. The hierarchical volatility and solubility parameters of mixed solvents were adjusted effectively by changing proportions of different components, the thermogravimetric curves of resins and organic vehicles were measured by thermogravimetric analyzer, the effect of solubility parameter on the dissolvability of resins in the solvent and the residual of organic vehicles were studied. Results showed that the hierar-chical volatilization of solvents can be obtained by mixing different solvents; the intrinsic vis-cosity of the organic vehicle is higher and the thermal decomposition residue of polyacrylate resins is lower when the solubility parameters of mixed solvents and polyacrylate resins are closer. The low residual sintering of organic vehicles can be achieved by using the mixed solvent with hierarchical volatility and approximate solubility parameters as resins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.