In this paper, an experimental study was performed to investigate the photothermal conversion properties of CuO-H 2 O nanofluid-based volumetric receiver mainly considering the effects of nanoparticle (NP) concentration, irradiation time, and receiver depth. First, stable aqueous suspensions of CuO with NPs having average diameter close to 10 nm were produced by the precursor transformation method. The spectral transmittances of CuO-H 2 O nanofluids decrease with increasing the NP concentration (0.01-0.25 wt%) at wavelengths of 200 to 1350 nm. The photothermal conversion performance of CuO-H 2 O nanofluids is sensitive to the receiver depth, irradiation time, and NP concentration. The higher NP concentration causes stronger optical absorption in the upper part and reduces the temperature at the bottom accordingly. The temperature difference between CuO-H 2 O nanofluid and distilled water increased initially and then decreased with the increase of penetration depth, and there existed an optimal depth of 1 cm with respect to the best photothermal conversion performance. The receiver efficiency decreased with increasing the light irradiation time, and an efficiency improvement up to 30.4% was achieved for the 0.25 wt% nanofluid at the optimal depth of 1 cm as compared with water. This work shows that volumetric receivers provide a potential alternative for solar thermal energy utilization versus surface-based absorber especially under concentrated solar radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.