Alfalfa (Medicago sativa L.) is an important forage, and salinity is a major stress factor on its yield. In this study, we show that osmotic stress retards alfalfa seedling growth, while ionic/oxidative stress reduces its seed germination. Ethylene treatment can recover the germination rate of alfalfa seeds under salt stress, while ethylene inhibitor silver thiosulfate exacerbates salt effects. ETH reduces the accumulation of MDA and H 2 O 2 and increases POD activity. ETH and ACC improve the salt tolerance of alfalfa by increasing proline content under salt stress. In contrast, STS inhibits alfalfa seed germination by reducing POD activity. NaCl treatment reduces chlorophyll content in alfalfa leaves, while ETH and ACC can increase the chlorophyll content and promote seedling growth. ETH promotes the growth of alfalfa in saline condition by reducing the expression of MsACO and MsERF8 genes, while increases its germination rate by upregulating MsERF11 gene. Silencing of MsETR2, a putative ethylene receptor gene in alfalfa, abolishes ethylene triggered tolerance to salt stress. In summary, we show that ethylene improves salt tolerance in alfalfa via MsETR2 dependent manner, and we also analyze the regulatory mechanism of ethylene during germination of alfalfa seeds under salt stress.
Alfalfa (Medicago sativa L.) is an important forage crop, and salt stress is a major limiting factor in its yield. Melatonin (MT) is a multi-regulatory molecule in plants. We showed that basal MT content was positively correlated with the salt tolerance degree of different alfalfa varieties. MT and its precursor 5-HT fully recovered seed germination while partially ameliorated seedling growth of salt-stressed alfalfa. The 5-HT showed some divergent effects from MT with regards to growth amelioration under salinity. Salt stress caused stunted plant growth in soil culture, while MT ameliorated it by elevating plant height, fresh weight, branching number, and chlorophyll content. Silencing of a putative MT receptor, MsPMTR1, which was shown to be membrane-localized, abolished the ameliorative effects of MT on salt-stressed alfalfa seedling growth, while overexpression of MsPMTR1 improved plant growth under salt stress. The RNA sequencing analysis showed that nine pathway genes were specifically induced by MT treatment compared with salt stress. These MT-responsive differentially expressed genes include basal metabolic pathway genes, such as “ribosome, elongation factor,” “sugar and lipid metabolism,” and “photosynthesis” and stress-related genes encoding “membrane integrity” related proteins, heat shock protein, peroxidase/oxidoreductase, and protease. Several abiotic stress response-related genes, such as DRE, ARF, HD-ZF, MYB, and REM were repressed by NaCl treatment while induced by MT treatment. In summary, we demonstrated the importance of MsPMTR1 in MT-mediated salt tolerance in alfalfa, and we also analyzed the regulatory mechanism of MT during alfalfa seed germination under salt stress.
Plants protect themselves from virus infections by several different defence mechanisms. RNA interference (RNAi) is one prominent antiviral mechanism, which requires the participation of AGO (Argonaute) and Dicer/DCL (Dicer-like) proteins. Effector-triggered immunity (ETI) is an antiviral mechanism mediated by resistance (R) genes, most of which encode nucleotide-binding site-leucine-rich repeat (NBS-LRR) family proteins. MicroRNAs (miRNAs) play important regulatory roles in plants, including the regulation of host defences. Soybean mosaic virus (SMV) is the most common virus in soybean and, in this work, we identified dozens of SMV-responsive miRNAs by microarray analysis in an SMV-susceptible soybean line. Amongst the up-regulated miRNAs, miR168a, miR403a, miR162b and miR1515a predictively regulate the expression of AGO1, AGO2, DCL1 and DCL2, respectively, and miR1507a, miR1507c and miR482a putatively regulate the expression of several NBS-LRR family disease resistance genes. The regulation of target gene expression by these seven miRNAs was validated by both transient expression assays and RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE) experiments. Transcript levels for AGO1, DCL1, DCL2 and five NBS-LRR family genes were repressed at different time points after SMV infection, whereas the corresponding miRNA levels were up-regulated at these same time points. Furthermore, inhibition of miR1507a, miR1507c, miR482a, miR168a and miR1515a by short tandem target mimic (STTM) technology compromised SMV infection efficiency in soybean. Our results imply that SMV can counteract soybean defence responses by the down-regulation of several RNAi pathway genes and NBS-LRR family resistance genes via the induction of the accumulation of their corresponding miRNA levels.
RNAi (RNA interference) is an important defense response against virus infection in plants. The core machinery of the RNAi pathway in plants include DCL (Dicer Like), AGO (Argonaute) and RdRp (RNA dependent RNA polymerase). Although involvement of these RNAi components in virus infection responses was demonstrated in Arabidopsis thaliana, their contribution to antiviral immunity in Nicotiana benthamiana, a model plant for plant-pathogen interaction studies, is not well understood. In this study, we investigated the role of N. benthamiana NbAGO2 gene against TMV (Tomato mosaic virus) infection. Silencing of NbAGO2 by transient expression of an hpRNA construct recovered GFP (Green fluorescent protein) expression in GFP-silenced plant, demonstrating that NbAGO2 participated in RNAi process in N. benthamiana. Expression of NbAGO2 was transcriptionally induced by both MeSA (Methylsalicylate acid) treatment and TMV infection. Down-regulation of NbAGO2 gene by amiR-NbAGO2 transient expression compromised plant resistance against TMV infection. Inhibition of endogenous miR403a, a predicted regulatory microRNA of NbAGO2, reduced TMV infection. Our study provides evidence for the antiviral role of NbAGO2 against a Tobamovirus family virus TMV in N. benthamiana, and SA (Salicylic acid) mediates this by induction of NbAGO2 expression upon TMV infection. Our data also highlighted that miR403a was involved in TMV defense by regulation of target NbAGO2 gene in N. Benthamiana.
Soybean mosaic virus (SMV) is a severe soybean (Glycine max) pathogen. Here we characterize a soybean SMV resistance cluster (SRC) that comprises five resistance (R) genes. SRC1 encodes a Toll/interleukin-1 receptor and nucleotide-binding site (TIR-NBS [TN]) protein, SRC4 and SRC6 encode TIR proteins with a short EF-hand domain, while SRC7 and SRC8 encode TNX proteins with a noncanonical basic secretory protein (BSP) domain at their C-termini. We mainly studied SRC7, which contains a noncanonical BSP domain and gave full resistance to SMV. SRC7 possessed broad-spectrum antiviral activity toward several plant viruses including SMV, plum pox virus, potato virus Y, and tobacco mosaic virus. The TIR domain alone was both necessary and sufficient for SRC7 immune signaling, while the NBS domain enhanced its activity. Nuclear oligomerization via the interactions of both TIR and NBS domains was essential for SRC7 function. SRC7 expression was transcriptionally inducible by SMV infection and salicylic acid (SA) treatment, and SA was required for SRC7 triggered virus resistance. SRC7 expression was posttranscriptionally regulated by miR1510a and miR2109, and the SRC7-miR1510a/miR2109 regulatory network appeared to contribute to SMV–soybean interactions in both resistant and susceptible soybean cultivars. In summary, we report a soybean R gene cluster centered by SRC7 that is regulated at both transcriptional and posttranscriptional levels, possesses a yet uncharacterized BSP domain, and has broad-spectrum antiviral activities. The SRC cluster is special as it harbors several functional R genes encoding atypical TIR-NBS-LRR (TNL) type R proteins, highlighting its importance in SMV–soybean interaction and plant immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.