Aims/IntroductionRenal function impairment related to type 2 diabetes (T2DM) presents serious threat to public health. Previous studies suggest that vascular endothelial growth factor-B (VEGF-B) might contribute to renal injury. Therefore, this study investigated the association of serum VEGF-B level with the risk of renal function impairment in T2DM patients.Materials and MethodsSerum VEGF-B levels were measured in 213 patients with type 2 diabetes and 31 healthy participants. Participants with type 2 diabetes were further divided into a group of 112 participants with eGFR<90 mL/min/1.73m2 and 101 participants with eGFR≥ 90 mL/min/1.73m2. Clinical data were collected, and a binary logistic regression model was employed to test the association between potential predictors and eGFR.ResultsSerum VEGF-B levels evaluated in type 2 diabetes patients compared with healthy controls. In patients with type 2 diabetes, serum VEGF-B level was positively correlated with triglyceride, serum creatinine and cystatin C while negatively correlated with HDL-C and eGFR. Binary logistic regression showed that serum VEGF-B level was an independent risk factor of eGFR<90 mL/min/1.73m2.ConclusionsSerum VEGF-B level is associated with renal function impairment in patients with type 2 diabetes and may be a potential drug target for diabetic kidney disease.
Brown and beige adipose tissues regulate body energy expenditure through adaptive thermogenesis, which converts energy into heat by oxidative phosphorylation uncoupling. Although promoting adaptive thermogenesis has been demonstrated to be a prospective strategy for obesity control, there are few methods for increasing adipose tissue thermogenesis in a safe and effective way. Histone deacetylase (HDAC) is a category of epigenetic modifying enzymes that catalyzes deacetylation on both histone and non-histone proteins. Recent studies illustrated that HDACs play an important role in adipose tissue thermogenesis through modulating gene transcription and chromatin structure as well as cellular signals transduction in both deacetylation dependent or independent manners. Given that different classes and subtypes of HDACs show diversity in the mechanisms of adaptive thermogenesis regulation, we systematically summarized the effects of different HDACs on adaptive thermogenesis and their underlying mechanisms in this review. We also emphasized the differences among HDACs in thermogenesis regulation, which will help to find new efficient anti-obesity drugs targeting specific HDAC subtypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.