As the number of reported deoxynivalenol (DON) contamination incidents increased steadily over the past decades, there has been a widespread interest in understanding the cellular mechanisms of the toxicological effects of DON using in vitro systems and omics technologies. The present investigation was conducted to understand the metabolomic changes in human hepatocellular carcinoma cells (HepG2) exposed to 10 μM DON for short term (4 h) and long term (12 h) periods, using a non-targeted metabolomics approach. Our results revealed a remarkable metabolic shift from short term to long term exposure to DON in HepG2 cells. Our metabolomics data also confirmed the role of DON induced oxidative stress in DON toxicity. Coupled with pattern recognition and pathway analysis, effects of DON on redox homeostasis, energy balance, lipid metabolism, and potential toxicological mechanisms were discussed, which would facilitate further studies on the risk assessment of the dietary mycotoxin DON.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.