ObjectivesTo investigate the association between degeneration of retinal structure and shrinkage of the optic tract in patients after thalamic stroke.Materials and methodsPatients with unilateral thalamic stroke were included. Structural magnetic resonance imaging (MRI) and optical coherence tomography (OCT) were performed to obtain parameters of optic tract shrinkage (lateral index) and retina structural thickness (retinal nerve fiber layer, RNFL; peripapillary retinal nerve fiber layer, pRNFL; ganglion cell-inner plexiform layer, GCIP), respectively. Visual acuity (VA) examination under illumination was conducted using Snellen charts and then converted to the logarithm of the minimum angle of resolution (LogMAR). We investigated the association between LI and OCT parameters and their relationships with VA.ResultsA total of 33 patients and 23 age-sex matched stroke-free healthy controls were enrolled. Patients with thalamic stroke showed altered LI compared with control participants (P = 0.011) and a significantly increased value of LI in the subgroup of disease duration more than 6 months (P = 0.004). In these patients, LI were significantly associated with pRNFL thickness (β = 0.349, 95% confidence interval [CI]: 0.134–0.564, P = 0.002) after adjusting for confounders (age, sex, hypertension, diabetes, dyslipidemia, and lesion volume). LI and pRNFL were both significantly associated with VA in all patients (LI: β = −0.275, 95% CI: −0.539 to −0.011, P = 0.041; pRNFL: β = −0.023, 95% CI: −0.046 to −0.001, P = 0.040) and in subgroup of disease duration more than 6 months (LI: β = −0.290, 95% CI: −0.469 to −0.111, P = 0.002; pRNFL: β = −0.041, 95% CI: −0.065 to −0.017, P = 0.003).ConclusionShrinkage of the optic tract can be detected in patients with thalamic stroke, especially after 6 months of stroke onset. In these patients, the extent of optic tract atrophy is associated with pRNFL thickness, and they are both related to visual acuity changes.
Background: The retina and brain share similar neuronal and microvascular features. We aimed to investigate the retinal thickness and microvasculature in patients with thalamic infarcts compared with control participants. Material and methods: Swept-source optical coherence tomography (SS-OCT) was used to image the macular thickness (retinal nerve fiber layer, RNFL; ganglion cell-inner plexiform layer, GCIP), while OCT angiography was used to image the microvasculature (superficial vascular plexus, SVP; intermediate capillary plexus, ICP; deep capillary plexus, DCP). Inbuilt software was used to measure the macular thickness (µm) and microvascular density (%). Lesion volumes were quantitively assessed based on structural magnetic resonance images. Results: A total of 35 patients with unilateral thalamic infarction and 31 age–sex-matched controls were enrolled. Compared with control participants, thalamic infarction patients showed a significantly thinner thickness of RNFL (p < 0.01) and GCIP (p = 0.02), and a lower density of SVP (p = 0.001) and ICP (p = 0.022). In the group of patients, ipsilateral eyes showed significant reductions in SVP (p = 0.033), RNFL (p = 0.01) and GCIP (p = 0.043). When divided into three groups based on disease duration (<1 month, 1–6 months, and >6 months), no significant differences were found among these groups. After adjusting for confounders, SVP, ICP, DCP, RNFL, and GCIP were significantly correlated with lesion volume in patients. Conclusions: Thalamic infarction patients showed significant macular structure and microvasculature changes. Lesion size was significantly correlated with these alterations. These findings may be useful for further research into the clinical utility of retinal imaging in stroke patients, especially those with damage to the visual pathway.
The neuro-ophthalmologic symptoms and retinal changes have been increasingly noticed after thalamic stroke and increasing evidence showing distinct alterations occurred in the vision-related functional network, while their intrinsic correlations are not completely understood. We aimed to explore the altered of functional network linking patterns and retina parameters, and their correlations with visual performance in thalamic stroke patients. Multi-modular functional connectivity (FC) was obtained with resting-state functional MRI. Optical coherence tomography-angiography was used to obtain retina parameters (retinal nerve fiber layer, RNFL; ganglion cell-inner plexiform layer, GCIP; superficial vascular complex, SVC; and deep vascular complex, DVC). Visual performance was measured through visual acuity (VA). Forty-six patients with first-ever unilateral thalamic stroke (mean age 59.74 ± 10.02 years, 33 males) were included. Significant associations were found in FC of Attention-to-Default Mode with SVC, RNFL, and GCIPL, and in FC of Attention-to-Visual with RNFL (p < 0.05). Both RNFL and GCIPL were significantly associated with the FC of Visual-to-Visual (p < 0.05). Only GCIPL was associated with VA (p = 0.038). In stratified analysis based on the disease duration of 6-month, distinct and significant linking patterns were displayed in muti-modular FC and various certain retina parameters; and their correlations with VA varied in each subgroup, respectively. These findings provide new insight into the understanding of the neural basis of the associations between brain network dysfunction and impaired visual performance in patients with thalamic stroke. Our findings are novel and might benefit targeted and individualized therapies in the future. Further in-depth studies are needed to verify our results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.