Fabrication processes of fossil fuel-derived carbon nanomaterials are of high carbon emissions. Deriving carbon materials from low-cost and sustainable biomass is eco-friendly. Cotton, one of the most abundant biomass materials, naturally holds a hierarchically porous structure, making the activated cotton textile (ACT) an ideal scaffold for loading active materials. Here, we report a low-cost approach to massively producing multiwalled carbon nanotubes (MWCNTs) via a combination process of vapor–liquid–solid (VLS) and solid–liquid–solid (SLS) where cotton decomposed into carbon-containing gases and amorphous carbons that then dissolved into Fe nanoparticles, forming Fe/Fe3C-encapsulated MWCNTs. The lithium–sulfur (Li–S) battery constructed by the Fe/Fe3C-MWCNT@ACT/S composite (as the cathode) and the Fe/Fe3C-MWCNT@ACT (as the interlayer) exhibited a superlative cycling stability (over 1000 cycles at 1.0 C), an ultralow capacity decay rate (0.0496% per cycle) and a remarkable specific capacity (1273 mAh g–1 at 0.1 C). The Fe/Fe3C-MWCNTs enhanced electrode stability and suppressed polysulfide dissolution during cycling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.