Fine-grained visual classication (FGVC) is much more challenging than traditional classication tasks due to the inherently subtle intra-class object variations. Recent works mainly tackle this problem by focusing on how to locate the most discriminative parts, more complementary parts, and parts of various granularities. However, less effort has been placed to which granularities are the most discriminative and how to fuse information cross multi-granularity. In this work, we propose a novel framework for fine-grained visual classication to tackle these problems. In particular, we propose: (i) a novel progressive training strategy that adds new layers in each training step to exploit information based on the smaller granularity information found at the last step and the previous stage. (ii) a simple jigsaw puzzle generator to form images contain information of different granularity levels. We obtain state-of-the-art performances on several standard FGVC benchmark datasets, where the proposed method consistently outperforms existing methods or delivers competitive results. The code will be available at https://github.com/RuoyiDu/PMG-Progressive-Multi-Granularity-Training
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.