Memristor-based systems can exhibit the phenomenon of extreme multi-stability, which results in the coexistence of infinitely many attractors. However, most of the recently published literature focuses on the extreme multi-stability related to memristor initial conditions rather than non-memristor initial conditions. In this paper, we present a new five-dimensional (5-D) two-memristor-based jerk (TMJ) system and study complex dynamical effects induced by memristor and non-memristor initial conditions therein. Using multiple numerical methods, coupling-coefficient-reliant dynamical behaviors under different memristor initial conditions are disclosed, and the dynamical effects of the memristor initial conditions under different non-memristor initial conditions are revealed. The numerical results show that the dynamical behaviors of the 5-D TMJ system are not only dependent on the coupling coefficients, but also dependent on the memristor and non-memristor initial conditions. In addition, with the analog and digital implementations of the 5-D TMJ system, PSIM circuit simulations and microcontroller-based hardware experiments validate the numerical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.