The effective recycling of cellulase requires an in-depth understanding of cellulase adsorption and desorption. In the present study, we examined the adsorption behaviors and stabilities of cellulase at different pH values. Acidic pH (\4.8) was found to favor adsorption, whereas neutral and alkaline pH (especially pH 7 and 10) favored desorption. The influence of pH on cellulase activity was temperature dependent. Under mild conditions (e.g., pH 7 and 25°C), the effect of pH on cellulase activity was reversible, and the cellulase activity can return to almost 100% by adjusting the pH value to 4.8. However, under severe conditions (e.g. pH 10 and 50°C), irreversible inactivation may take place. We also explored the roles of pH and temperature in cellulase adsorption kinetics and isotherms. At pH 4.8, temperature had no remarkable effect on the adsorption capacity of the cellulases onto substrate. However, at pH 7 and 10, high temperatures lead to more cellulase desorption. Only at pH 4.8 does cellulase adsorption well fit (R 2 [ 0.96) the pseudo-first-order kinetic and Langmuir adsorption isotherm (R 2 [ 0.99) models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.