In this paper, velocity and attenuation of ultrasonic S-wave in a water-saturated rock are used for calculating shear modulus and matrix permeability of the rock, via a model improved from Biot theory. The model requires two inputs, i.e., the dry velocity of S-wave and the average distance of aperture representing pores, to yield phase velocity and the quality factor as functions of frequency. By fitting the predicted velocity and quality factor against the ultrasonically measured counterparts, the dry velocity of S-wave and the average distance of aperture are ascertained, which in turn yield shear modulus and matrix permeability, respectively. The modeling results on D’Euville limestone from France show that the specimen has shear modulus of 11.35 and 11.55 GPa (under differential pressures of 3 and 5 MPa, respectively) and matrix permeability of 0.0486 Darcy (under both differential pressures). The matrix permeability appears to be approximately one half of Darcy permeability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.