Whether the well-known metabolic switch AMP-activated protein kinase (AMPK) is involved in the insulin-sensitizing effect of calorie restriction (CR) is unclear. In this study, we investigated the role of AMPK in the insulin-sensitizing effect of CR in skeletal muscle. Wild-type (WT) and AMPK-α2−/− mice received ad libitum (AL) or CR (8 weeks at 60% of AL) feeding. CR increased the protein level of AMPK-α2 and phosphorylation of AMPK-α2. In WT and AMPK-α2−/− mice, CR induced comparable changes of body weight, fat pad weight, serum triglycerides, serum nonesterified fatty acids, and serum leptin levels. However, decreasing levels of fasting/fed insulin and fed glucose were observed in WT mice but not in AMPK-α2−/− mice. Moreover, CR-induced improvements of whole-body insulin sensitivity (evidenced by glucose tolerance test/insulin tolerance test assays) and glucose uptake in skeletal muscle tissues were abolished in AMPK-α2−/− mice. Furthermore, CR-induced activation of Akt-TBC1D1/TBC1D4 signaling, inhibition of mammalian target of rapamycin−S6K1−insulin receptor substrate-1 pathway, and induction of nicotinamide phosphoribosyltransferase−NAD+−sirtuin-1 cascade were remarkably impaired in AMPK-α2−/− mice. CR serum increased stability of AMPK-α2 protein via inhibiting the X chromosome-linked ubiquitin-specific protease 9–mediated ubiquitylation of AMPK-α2. Our results suggest that AMPK may be modulated by CR in a ubiquitylation-dependent manner and acts as a chief dictator for the insulin-sensitizing effects of CR in skeletal muscle.
Nicotinamide phosphoribosyltransferase (NAMPT) is a promising anticancer target. Using high throughput screening system targeting NAMPT, we obtained a potent NAMPT inhibitor MS0 (China Patent ZL201110447488.9) with excellent in vitro activity (IC50 = 9.87 ± 1.15nM) and anti-proliferative activity against multiple human cancer cell lines including stem-like cancer cells. Structure-activity relationship studies yielded several highly effective analogues. These inhibitors specifically bound NAMPT, rather than downstream NMNAT. We provided the first chemical case using cellular thermal shift assay to explain the difference between in vitro and cellular activity; MS7 showed best in vitro activity (IC50 = 0.93 ± 0.29 nM) but worst cellular activity due to poor target engagement in living cells. Site-directed mutagenesis studies identified important residues for NAMPT catalytic activity and inhibitor binding. The present findings contribute to deep understanding the action mode of NAMPT inhibitors and future development of NAMPT inhibitors as anticancer agents.
Immortal copolymerization
of epoxides/CO2 using macro-chain-transfer
agent (macro-CTA) is a useful method to prepare CO2-based
block copolymers for manufacturing high value-added materials. Despite
a variety of CO2-based block copolymers that have been
reported using distinct macro-CTAs, issues including catalytic activity
and blocking efficiency for the immortal polymerization remain superficially
understood. Here, we systematically studied the reaction activity
and blocking efficiency by using various macro-CTAs (including PPG,
PEG, and PS) in the presence of two classical catalyst systems ((BDI)ZnOAc
and SalenCoTFA/PPN-TFA). By analysis of the gel permeation chromatograms
via mathematical deconvolution, it comes to a conclusion that the
size, nature, and ratio of [macro-CTA]/[Cat.] strongly influence the
catalytic activity of the reaction and blocking efficiency for the
resultant block copolymers. Thin film self-assembly of PS/PPC block
copolymers was investigated, and the results were analyzed by SEM
to ascertain the impact of blocking efficiency on nanoassembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.