Syphilis caused by Treponema pallidum (T. pallidum), is associated with the oxidative stress due to its inflammation-like symptom, and detecting the reactive oxygen species (ROS) is crucial for monitoring the...
In order to improve the recognition speed and accuracy of face expression recognition, we propose a face expression recognition method based on PSA—YOLO (Pyramids Squeeze Attention—You Only Look Once). Based on CSPDarknet53, the Focus structure and pyramid compression channel attention mechanism are integrated, and the network depth reduction strategy is adopted to build a PSA-CSPDarknet-1 lightweight backbone network with small parameters and high accuracy, which improves the speed of face expression recognition. Secondly, in the neck of the network, a spatial pyramid convolutional pooling module is built, which enhances the spatial information extraction ability of deep feature maps with a very small computational cost, and uses the α—CIoU loss function as the bounding box loss function to improve the recognition accuracy of the network for targets under high IoU threshold and improve the accuracy of face expression recognition. The proposed method is validated on the JAFFE, CK+, and Cohn-Kanade datasets. The experimental results show that the running time of the proposed method and the comparison method is reduced from 1,800 to 200 ms, and the recognition accuracy is increased by 3.11, 2.58, and 3.91%, respectively, so the method proposed in this paper has good applicability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.