Cancer remains a deadly disease. We developed a lightweight, accurate, general-purpose deep learning algorithm for skin cancer classification. Squeeze-MNet combines a Squeeze algorithm for digital hair removal during preprocessing and a MobileNet deep learning model with predefined weights. The Squeeze algorithm extracts important image features from the image, and the black-hat filter operation removes noise. The MobileNet model (with a dense neural network) was developed using the International Skin Imaging Collaboration (ISIC) dataset to fine-tune the model. The proposed model is lightweight; the prototype was tested on a Raspberry Pi 4 Internet of Things device with a Neo pixel 8-bit LED ring; a medical doctor validated the device. The average precision (AP) for benign and malignant diagnoses was 99.76% and 98.02%, respectively. Using our approach, the required dataset size decreased by 66%. The hair removal algorithm increased the accuracy of skin cancer detection to 99.36% with the ISIC dataset. The area under the receiver operating curve was 98.9%.
This paper employs a unique sensor fusion (SF) approach to detect a COVID-19 suspect and the enhanced MobileNetV2 model is used for face mask detection on an Internet-of-Things (IoT) platform. The SF algorithm avoids incorrect predictions of the suspect. Health data are continuously monitored and recorded on the ThingSpeak cloud server. When a COVID-19 suspect is detected, an emergency email is sent to healthcare personnel with the GPS position of the suspect. A lightweight and fast deep learning model is used to recognize appropriate mask positioning; this restricts virus transmission. When tested with the real-world masked face dataset (RMFD) dataset, the enhanced MobileNetV2 neural network is optimal for Raspberry Pi. Our IoT device and deep learning model are 98.50% (compared to commercial devices) and 99.26% accurate, respectively, and the time required for face mask evaluation is 31.1 milliseconds. The proposed device is useful for remote monitoring of covid patients. Thus, the method will find medical application in the detection of COVID-19-positive patients. The device is also wearable.
Semiconductor integration technology have been steadily developed over the last several decades and recently modified into a multicore structure due to problems such as heat generation. As a result, multicore technologies of high-performance computing systems are emerging as systems interconnect technology, which is a technology for making multiple computers into one computer cluster. High-performance computing systems (Computer Clusters) using interconnect technology are essential where artificial intelligence, huge data, and SNS are required. Generally in this technique each constituent node has been processes by its own operation and communicates with different nodes [1]. Therefore, a high-speed computing systems are usually uses a high-speed local area network. In this case InfiniBand and Gigabit Ethernet are typical communication
We propose a dual-domain deep learning technique for accelerating compressed sensing magnetic resonance image reconstruction. An advanced convolutional neural network with residual connectivity and an attention mechanism was developed for frequency and image domains. First, the sensor domain subnetwork estimates the unmeasured frequencies of k-space to reduce aliasing artifacts. Second, the image domain subnetwork performs a pixel-wise operation to remove blur and noisy artifacts. The skip connections efficiently concatenate the feature maps to alleviate the vanishing gradient problem. An attention gate in each decoder layer enhances network generalizability and speeds up image reconstruction by eliminating irrelevant activations. The proposed technique reconstructs real-valued clinical images from sparsely sampled k-spaces that are identical to the reference images. The performance of this novel approach was compared with state-of-the-art direct mapping, single-domain, and multi-domain methods. With acceleration factors (AFs) of 4 and 5, our method improved the mean peak signal-to-noise ratio (PSNR) to 8.67 and 9.23, respectively, compared with the single-domain Unet model; similarly, our approach increased the average PSNR to 3.72 and 4.61, respectively, compared with the multi-domain W-net. Remarkably, using an AF of 6, it enhanced the PSNR by 9.87 ± 1.55 and 6.60 ± 0.38 compared with Unet and W-net, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.