Tissue histology utilizing chemical and immunohistochemical labels plays an important role in biomedicine and disease diagnosis. Recent research suggests that mid-infrared (IR) spectroscopic imaging may augment histology by providing quantitative molecular information. One of the major barriers to this approach is long acquisition time using Fourier-transform infrared (FTIR) spectroscopy. Recent advances in discrete frequency sources, particularly quantum cascade lasers (QCLs), may mitigate this problem by allowing selective sampling of the absorption spectrum. However, DFIR imaging only provides a significant advantage when the number of spectral samples is minimized, requiring a priori knowledge of important spectral features. In this paper, we demonstrate the use of a GPU-based genetic algorithm (GA) using linear discriminant analysis (LDA) for DFIR feature selection. Our proposed method relies on pre-acquired broadband FTIR images for feature selection. Based on user-selected criteria for classification accuracy, our algorithm provides a minimal set of features that can be used with DFIR in a time-frame more practical for clinical diagnosis.
There has recently been significant interest within the vibrational spectroscopy community to apply quantitative spectroscopic imaging techniques to histology and clinical diagnosis. However, many of the proposed methods require collecting spectroscopic images that have a similar region size and resolution to corresponding histological images. Since spectroscopic images contain significantly more spectral samples than traditional histology, the resulting data sets can approach hundreds of gigabytes to terabytes in size. This makes them difficult to store and process, and the tools available to researchers for handling large spectroscopic data sets are limited. Fundamental mathematical tools, such as MATLAB, Octave, and SciPy, are extremely powerful but require data to be stored in a fraction of the available system memory. These memory limitations become impractical for even modestly sizes histological images, which can be hundreds of gigabytes in size. In this paper, we propose an open-source toolkit designed to perform out-of-core processing of hyperspectral images. By taking advantage of graphical processing unit (GPU) computing combined with adaptive data streaming, our software alleviates common workstation memory limitations while achieving better performance than existing applications.
Infrared (IR) spectroscopic microscopes provide the potential for label-free quantitative molecular imaging of biological samples, which can be used to aid in histology, forensics, and pharmaceutical analysis. Most IR imaging systems use broadband illumination combined with a spectrometer to separate the signal into spectral components. This technique is currently too slow for many biomedical applications such as clinical diagnosis, primarily due to the availability of bright mid-infrared sources and sensitive MCT detectors. There has been a recent push to increase throughput using coherent light sources, such as synchrotron radiation and quantum cascade lasers. While these sources provide a significant increase in intensity, the coherence introduces fringing artifacts in the final image. We demonstrate that applying time-delayed integration in one dimension can dramatically reduce fringing artifacts with minimal alterations to the standard infrared imaging pipeline. The proposed technique also offers the potential for less expensive focal plane array detectors, since linear arrays can be more readily incorporated into the proposed framework.
Collagen quantity and integrity play an important role in understanding diseases such as myelofibrosis (MF). Label-free mid-infrared spectroscopic imaging (MIRSI) has the potential to quantify collagen while minimizing the subjective variance observed with conventional histopathology. Infrared (IR) spectroscopy with polarization sensitivity provides chemical information while also estimating tissue dichroism. This can potentially aid MF grading by revealing the structure and orientation of collagen fibers. Simultaneous measurement of collagen structure and biochemical properties can translate clinically into improved diagnosis and enhance our understanding of disease progression. In this paper, we present the first report of polarization-dependent spectroscopic variations in collagen from human bone marrow samples. We build on prior work with animal models and extend it to human clinical biopsies with a practical method for high-resolution chemical and structural imaging of bone marrow on clinical glass slides. This is done using a new polarization-sensitive photothermal mid-infrared spectroscopic imaging scheme that enables sample and source independent polarization control. This technology provides 0.5 µm spatial resolution, enabling the identification of thin (≈1 µm) collagen fibers that were not separable using fingerprint wavenumber Fourier transform infrared (FT-IR) imaging at diffraction-limited resolution ( ≈ 5 µm). Finally, we propose quantitative metrics to identify fiber orientation from discrete band images (amide I and amide II) measured under three polarizations. Previous studies have used a pair of orthogonal polarization measurements, which is insufficient for clinical samples since human bone biopsies contain collagen fibers with multiple orientations. Here, we address this challenge and demonstrate that three polarization measurements are necessary to resolve orientation ambiguity in clinical bone marrow samples. This is also the first study to demonstrate the ability to spectroscopically identify thin collagen fibers (≈1 µm diameter) and their orientations, which is critical for accurate grading of human bone marrow fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.