Purpose
Electrocardiogram (ECG) is one of the most essential tools for detecting heart problems. Till today most of the ECG records are available in paper form. It can be challenging and time-consuming to manually assess the ECG paper records. Hence, automated diagnosis and analysis are possible if we digitize such paper ECG records.
Methods
The proposed work aims to convert ECG paper records into a 1-D signal and generate an accurate diagnosis of heart-related problems using deep learning. Camera-captured ECG images or scanned ECG paper records are used for the proposed work. Effective pre-processing techniques are used for the removal of shadow from the images. A deep learning model is used to get a threshold value that separates ECG signal from its background and after applying various image processing techniques threshold ECG image gets converted into digital ECG. These digitized 1-D ECG signals are then passed to another deep learning model for the automated diagnosis of heart diseases into different classes such as ST-segment elevation myocardial infarction (STEMI), Left Bundle Branch Block (LBBB), Right Bundle Branch Block (RBBB), and T-wave abnormality.
Results
The accuracy of deep learning-based binarization is 97%. Further deep learning-based diagnosis approach of such digitized paper ECG records was having an accuracy of 94.4%.
Conclusions
The digitized ECG signals can be useful to various research organizations because the trends in heart problems can be determined and diagnosed from preserved paper ECG records. This approach can be easily implemented in areas where such expertise is not available.
Supplementary Information
The online version contains supplementary material available at 10.1007/s40846-021-00632-0.
Anticipating the quantity of new associated or affirmed cases with novel coronavirus ailment 2019 (COVID-19) is critical in the counteraction and control of the COVID-19 flare-up. The new associated cases with COVID-19 information were gathered from 20 January 2020 to 21 July 2020. We filtered out the countries which are converging and used those for training the network. We utilized the SARIMAX, Linear regression model to anticipate new suspected COVID-19 cases for the countries which did not converge yet. We predict the curve of non-converged countries with the help of proposed Statistical SARIMAX model (SSM). We present new information investigation-based forecast results that can assist governments with planning their future activities and help clinical administrations to be more ready for what's to come. Our framework can foresee peak corona cases with an R-Squared value of 0.986 utilizing linear regression and fall of this pandemic at various levels for countries like India, US, and Brazil. We found that considering more countries for training degrades the prediction process as constraints vary from nation to nation. Thus, we expect that the outcomes referenced in this work will help individuals to better understand the possibilities of this pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.