Withania somnifera is one of the most valued plants and is extensively used in Indian, Unani, and African systems of traditional medicine. It possess a wide array of therapeutic properties including anti-arthritic, anti-aging, anti-cancer, anti-inflammatory, immunoregulatory, chemoprotective, cardioprotective, and recovery from neurodegenerative disorders. With the growing realization of benefits and associated challenges in the improvement of W. somnifera, studies on exploration of genetic and chemotypic variations, identification and characterization of important genes, and understanding the secondary metabolites production and their modulation has gained significant momentum. In recent years, several in vitro and in vivo preclinical studies have facilitated the validation of therapeutic potential of the phytochemicals derived from W. somnifera and have provided necessary impetus for gaining deeper insight into the mechanistic aspects involved in the mode of action of these important pharmaceutically active constituents. The present review highlights some of the current developments and future prospects of biotechnological intervention in this important medicinal plant.
Withania somnifera is a highly valued medicinal plant in traditional home medicine and is known for a wide range of bioactivities. Its commercial cultivation is adversely affected by poor seed viability and germination. Infestation by various pests and pathogens, survival under unfavourable environmental conditions, narrow genetic base, and meager information regarding biosynthesis of secondary metabolites are some of the other existing challenges in the crop. Biotechnological interventions through organ, tissue, and cell culture provide promising options for addressing some of these issues. In vitro propagation facilitates conservation and sustainable utilization of the existing germplasms and broadening the genetic base. It would also provide means for efficient and rapid mass propagation of elite chemotypes and generating uniform plant material round the year for experimentation and industrial applications. The potential of in vitro cell/organ cultures for the production of therapeutically valuable compounds and their large-scale production in bioreactors has received significant attention in recent years. In vitro culture system further provides distinct advantage for studying various cellular and molecular processes leading to secondary metabolite accumulation and their regulation. Engineering plants through genetic transformation and development of hairy root culture system are powerful strategies for modulation of secondary metabolites. The present review highlights the developments and sketches current scenario in this field.
Neuroinflammation is a major risk factor associated with the pathogenesis of neurodegenerative diseases. Conventional non-steroidal anti-inflammatory drugs are prescribed but their long term use is associated with adverse effects. Thus, herbal based medicines are attracting major attraction worldwide as potential therapeutic candidates. Tylophora indica (Burm. f) Merrill is a valuable medicinal plant well known in Ayurvedic practices for its immunomodulatory, anti-oxidant, anti-asthmatic and antirheumatic activities. The present study aimed to elucidate the antineuroinflammatory potential of water and hydroalcoholic leaf extracts of micropropagated plants of T. indica using BV-2 microglia activated with lipopolysaccharide as an in vitro model system and development of an efficient reproducible protocol for its in vitro cloning. Non cytotoxic doses of the water and hydroalcoholic extracts (0.2μg/ml and 20μg/ml, respectively) were selected using MTT assay. α-Tubulin, Iba-1 and inflammatory cascade proteins like NFκB, AP1 expression was studied using immunostaining to ascertain the anti-neuroinflammatory potential of these extracts. Further, anti-migratory activity was also analyzed by Wound Scratch Assay. Both extracts effectively attenuated lipopolysaccharide induced microglial activation, migration and the production of nitrite via regulation of the expression of NFκB and AP1 as the possible underlying target molecules. An efficient and reproducible protocol for in vitro cloning of T. indica through multiple shoot proliferation from nodal segments was established on both solid and liquid Murashige and Skoog's (MS) media supplemented with 15μM and 10μM of Benzyl Amino Purine respectively. Regenerated shoots were rooted on both solid and liquid MS media supplemented with Indole-3-butyric acid (5-15μM) and the rooted plantlets were successfully acclimatized and transferred to open field conditions showing 90% survivability. The present study suggests that T. indica may prove to be a potential anti-neuroinflammatory agent and may be further explored as a potential therapeutic candidate for the management of neurodegenerative diseases. Further, the current study will expedite the conservation of T. indica ensuring ample supply of this threatened medicinal plant to fulfill its increasing demand in herbal industry.
Withania somnifera (L.) Dunal known as Ashwagandha is commonly used in traditional Indian medicine system. It possesses immense therapeutic value against a large number of ailments such as mental diseases, asthma, inflammation, arthritis, rheumatism, tuberculosis, and a variety of other diseases including cancer. The therapeutic potential of W. somnifera is due to the presence of secondary metabolites mainly, tropane alkaloids and withanolides (steroidal lactones). The growing realization of commercial value of the plant has initiated a new demand for in vitro propagation of elite chemotypes of Withania. Micropropagation which is an important tool for rapid multiplication requires optimization of number of factors such as nutrient medium, status of medium (solid and liquid), type of explant, and plant growth regulators. Similarly, an efficient and reproducible in vitro regeneration system which is a prerequisite for the development of genetic transformation protocol requires precise manipulation of various intrinsic and extrinsic factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.