COVID-19 has ravaged the world and is the greatest of pandemics in modern human history, in the absence of treatment or vaccine, the mortality and morbidity rates are very high. The present investigation identifies potential leads from the plant Withania somnifera (Indian ginseng), a well-known antiviral, immunomodulatory, anti-inflammatory and a potent antioxidant plant, using molecular docking and dynamics studies. Two different protein targets of SARS-CoV-2 namely NSP15 endoribonuclease and receptor binding domain of prefusion spike protein from SARS-CoV-2 were targeted. Molecular docking studies suggested Withanoside X and Quercetin glucoside from W. somnifera have favorable interactions at the binding site of selected proteins, that is, 6W01 and 6M0J. The top-ranked phytochemicals from docking studies, subjected to 100 ns molecular dynamics (MD) suggested Withanoside X with the highest binding free energy (DG bind ¼ À89.42 kcal/mol) as the most promising inhibitor. During MD studies, the molecule optimizes its conformation for better fitting with the receptor active site justifying the high binding affinity. Based on proven therapeutic, that is, immunomodulatory, antioxidant and anti-inflammatory roles and plausible potential against n-CoV-2 proteins, Indian ginseng could be one of the alternatives as an antiviral agent in the treatment of COVID 19.
HIGHLIGHTSWithania somnifera has antiviral potential. Phytochemicals of Ashwagandha showed promising in silico docking and molecular dynamics results.
Decaprenylphosphoryl-β-d-ribose 2'-epimerase (DprE1), a vital enzyme for cell wall synthesis, plays a crucial role in the formation of lipoarabinomannan and arabinogalactan. It was first reported as a druggable target on the basis of inhibitors discovered in high throughput screening of a drug library. Since then, inhibitors with different types of chemical scaffolds have been reported for their activity against this enzyme. Formation of a covalent or noncovalent bond by the interacting ligand with the enzyme causes loss of its catalytic activity which ultimately leads to the death of the mycobacterium. This Perspective describes various DprE1 inhibitors as anti-TB agents reported to date.
Guanine and cytosine-rich nucleic acid sequences have the potential to form secondary structures such as G-quadruplexes and i-motifs, respectively. We show that stabilisation of G-quadruplexes using small molecules destabilises the i-motifs, and vice versa, indicating these gene regulatory controllers are interdependent in human cells. This has important implications as these structures are predominately considered as isolated structural targets for therapy, but their interdependency highlights the interplay of both structures as an important gene regulatory switch.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.