Background: Cancer caused nearly 8.8 million deaths in 2015. Limited efficacy, selectivity, drug resistance and toxicity are major complications associated with chemotherapy, potentiating the discovery of anticancer agents. Methods: A new series of N-(7-hydroxy-4-methyl-2-oxoquinolin-1(2H)-yl)acetamide/benzamide analogues (5a-j) was prepared from the precursor, 7-hydroxy-4-methyl-2H-chromen-2-one (3), as anticancer agent. The structural assignment of quinolone analogues (5a-j) was based on spectroscopic data analyses. The cytotoxicity was tested on breast cancer cell lines (MCF7 and MDA-MB- 231) by sulforhodamine B (SRB) assay and three dose-related parameters GI50, TGI, and LC50 were calculated. Results: 2-(2-chlorophenoxy)-N-(7-hydroxy-4-methyl-2-oxoquinolin-1(2H)-yl)acetamide (5a) showed the most potent cytotoxicity against the MCF7 and MDA-MB-231 cancer cell lines with GI50 of 18.7 and 48.1 µM respectively. The glide scores of the compounds, 5a-d were found to be related to the cytotoxicity profile and the emodel scores for ligands, 5a-j were found to be related to significant cytotoxicity. Conclusion: Compound 5a exhibited the most potent cytotoxicity and this report may provide some predictions to design more potent novel quinolines as cytotoxic agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.