The photo-sieving method enables the grain-size analysis of particles > 10 mm from unconsolidated openwork bedding surfaces. The accuracy is equal to the machine-sieving method. The sediment surface is photographed in the field using a camera stand. The enlarged print is digitized for computer processing by tracing the outlines of the pebbles. From the size and shape of the projection area of the individual pebble images the computer determines the ellipsoids of revolution, classifies these ellipsoids, and establishes their grain-size distribution in percentage by weight. Thus photo-sieving differs distinctly from pointcounting techniques. With the aid of photo-sieving, the surface grain-size distributions of larger sedimentary systems may be regularly mapped. Alluvial fans, braided rivers, both onshore and offshore coasts or areas of relict sediments and manganese nodules are suitable for this method.
Mercury (Hg) is still a focus of environmental research, since its levels in fish frequently exceed the Environmental Quality Standard (EQS) of 20 µg/kg for biota defined by the European Water Framework Directive (Directive 2008/105/EC). Current Hg levels in Abramis brama from German rivers are in the range of 73-346 µg/kg wet weight (2009) and exceed the EQS by a factor of 3.7-17.3. Therefore, it is important to identify the sources of Hg pollution in the aquatic environment and to develop effective strategies for reducing the input into associated river systems. The aim of the present study was to analyze Hg in the urban water cycle of the city of Frankfurt am Main, Germany. Samples were taken from the river Main crosscutting the city and its tributaries. In addition, precipitation, stormwater runoff, effluents of two municipal WWTPs, and stormwater management structures such as combined sewer overflows and stormwater retention basins have been analyzed. Loads of Hg have been determined based on the measured concentrations and a Hg mass balance for the aquatic system was created. A total of 160 water samples were analyzed by cold vapor atomic fluorescence spectroscopy (CVAFS) according to US EPA Method 1631. Results from the mass balance have shown that approximately 5 kg Hg/a enter and 15 kg Hg/a leave the study area of Frankfurt am Main via the river Main. The largest amount of Hg (24.58 kg/a) throughout the urban water cycle
OPEN ACCESSWater 2015, 7 6098 of Frankfurt am Main is transported via wastewater. However, municipal WWTPs in Frankfurt am Main have been identified as the largest Hg sink, since 99.7% (24.5 kg/a) of the Hg is shifted from the sewage water and stormwater during treatment into the sewage sludge. Thus, the increase of the Hg load in the river Main from 5 to 15 kg/a has to be attributed to other sources such as 3 industrial WWTPs, groundwater and non-treated stormwater runoff during heavy rain events.
Cover picture: Calabrian Massif and Ionian Shelf. The scenery is topped by Mt. Scorda, 1572 m, 17 km from the coast. The Buonamico and Careri river basins feed the submarine canyon which reaches a depth of 750 m in the foreground, 8.5 km off the coast.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.