An important arithmetic component of “Arithmetic and Logic Unit” or ALU is reconfigured in this paper, known as “Full-Adder-Subtractor”, where an advance low-power, high-speed nano technology “QCA” with electro-spin criterion is used with reversibility and the advancement of multilayer 3D circuitry. In this modern digital world, this selected nano-sized technology is an effective alternative of widely used “CMOS Technology” because all the limitations, mainly limitation due to the presence of high power dissipation at the time of device-density increment in a “CMOS” based integrated circuit, can be optimized by “QCA” nano technology with electro-spin criterion and this technology also supports reversible logic in multilayer 3D platform with less complexity. This paper, primarily presents two novel “QCA” based 3-layered “Adder-Subtractor” designs using the collaboration of multilayer inverter gates, reversible modified 3-input Feynman-Gate and 3-input MG (Majority Gate) with very less cell-complexity, area-occupation, delay and energy-dissipation and high output-strength, temperature-tolerance and accuracy. A clear parametric investigation on presented designs are shown clearly in this paper through a comparative manner with some previous published related structures. Additionally, another parametric-experiment on a novel multibit reversible multilayer “QCA” based “Full-Adder-Subtractor” circuitry using the working phenomenon of “Ripple Carry Adder” (RCA) and multibit subtractor (“ripple borrow subtractor” or RBS) is presented in this proposed work in a proper way and this combination of RCA and multibit subtraction operation converts the proposed circuitry into a hybrid form, which is more effective compare to some other advanced adders in parametric-optimization field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.