We have calculated parity nonconserving 7s − 6d 3/2 amplitude EPNC in 2 23Ra + using highprecision relativistic all-order method where all single and double excitations of the Dirac-Fock wave functions are included to all orders of perturbation theory. Detailed study of the uncertainty of the parity nonconserving (PNC) amplitude is carried out; additional calculations are performed to estimate some of the missing correlation corrections. A systematic study of the parity conserving atomic properties, including the calculation of the energies, transition matrix elements, lifetimes, hyperfine constants, quadrupole moments of the 6d states, as well as dipole and quadrupole ground state polarizabilities, is carried out. The results are compared with other theoretical calculations and available experimental values.
A relativistic version of the coupled-cluster single-double ͑CCSD͒ method is developed for atoms with a single valence electron. In earlier work, a linearized version of the CCSD method ͑with extensions to include a dominant class of triple excitations͒ led to accurate predictions for energies, transition amplitudes, hyperfine constants, and other properties of monovalent atoms. Further progress in high-precision atomic structure calculations for heavy atoms calls for improvement of the linearized coupled-cluster methodology. In the present work, equations for the single and double excitation coefficients of the Dirac-Fock wave function, including all nonlinear coupled-cluster terms that contribute at the single-double level, are worked out. Contributions of the nonlinear terms to energies, electric-dipole matrix elements, and hyperfine constants of low-lying states in alkali-metal atoms from Li to Cs are evaluated and the results are compared with other calculations and with precise experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.