We propose a novel construction for extracting a central or limit shape in a shape collection, connected via a functional map network. Our approach is based on enriching the latent space induced by a functional map network with an additional natural metric structure. We call this shape‐like dual object the limit shape and show that its construction avoids many of the biases introduced by selecting a fixed base shape or template. We also show that shape differences between real shapes and the limit shape can be computed and characterize the unique properties of each shape in a collection – leading to a compact and rich shape representation. We demonstrate the utility of this representation in a range of shape analysis tasks, including improving functional maps in difficult situations through the mediation of limit shapes, understanding and visualizing the variability within and across different shape classes, and several others. In this way, our analysis sheds light on the missing geometric structure in previously used latent functional spaces, demonstrates how these can be addressed and finally enables a compact and meaningful shape representation useful in a variety of practical applications.
In this paper, we propose to consider the adjoint operators of functional maps, and demonstrate their utility in several tasks in geometry processing. Unlike a functional map, which represents a correspondence simply using the pull‐back of function values, the adjoint operator reflects both the map and its distortion with respect to given inner products. We argue that this property of adjoint operators and especially their relation to the map inverse under the choice of different inner products, can be useful in applications including bi‐directional shape matching, shape exploration, and pointwise map recovery among others. In particular, in this paper, we show that the adjoint operators can be used within the cycle‐consistency framework to encode and reveal the presence or lack of consistency between distortions in a collection, in a way that is complementary to the previously used purely map‐based consistency measures. We also show how the adjoint can be used for matching pairs of shapes, by accounting for maps in both directions, can help in recovering point‐to‐point maps from their functional counterparts, and describe how it can shed light on the role of functional basis selection.
In many real-world applications, data appear to be sampled around 1-dimensional filamentary structures that can be seen as topological metric graphs. In this paper, we address the metric reconstruction problem of such filamentary structures from data sampled around them. We prove that they can be approximated with respect to the Gromov-Hausdorff distance by well-chosen Reeb graphs (and some of their variants) and provide an efficient and easy-to-implement algorithm to compute such approximations in almost linear time. We illustrate the performance of our algorithm on a few datasets.
In this paper, we propose a novel method, which we call CONSISTENT ZOOMOUT, for efficiently refining correspondences among deformable 3D shape collections, while promoting the resulting map consistency. Our formulation is closely related to a recent unidirectional spectral refinement framework, but naturally integrates map consistency constraints into the refinement. Beyond that, we show further that our formulation can be adapted to recover the underlying isometry among near-isometric shape collections with a theoretical guarantee, which is absent in the other spectral map synchronization frameworks. We demonstrate that our method improves the accuracy compared to the competing methods when synchronizing correspondences in both near-isometric and heterogeneous shape collections, but also significantly outperforms the baselines in terms of map consistency.
This paper proposes a learning-based framework for reconstructing 3D shapes from functional operators, compactly encoded as small-sized matrices. To this end we introduce a novel neural architecture, called OperatorNet, which takes as input a set of linear operators representing a shape and produces its 3D embedding. We demonstrate that this approach significantly outperforms previous purely geometric methods for the same problem. Furthermore, we introduce a novel functional operator, which encodes the extrinsic or pose-dependent shape information, and thus complements purely intrinsic pose-oblivious operators, such as the classical Laplacian. Coupled with this novel operator, our reconstruction network achieves very high reconstruction accuracy, even in the presence of incomplete information about a shape, given a soft or functional map expressed in a reduced basis. Finally, we demonstrate that the multiplicative functional algebra enjoyed by these operators can be used to synthesize entirely new unseen shapes, in the context of shape interpolation and shape analogy applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.