The posteriors over neural network weights are high dimensional and multimodal. Each mode typically characterizes a meaningfully different representation of the data. We develop Cyclical Stochastic Gradient MCMC (SG-MCMC) to automatically explore such distributions. In particular, we propose a cyclical stepsize schedule, where larger steps discover new modes, and smaller steps characterize each mode. We prove that our proposed learning rate schedule provides faster convergence to samples from a stationary distribution than SG-MCMC with standard decaying schedules. Moreover, we provide extensive experimental results to demonstrate the effectiveness of cyclical SG-MCMC in learning complex multimodal distributions, especially for fully Bayesian inference with modern deep neural networks.
Metropolis-Hastings (MH) is a commonly-used MCMC algorithm, but it can be intractable on large datasets due to requiring computations over the whole dataset. In this paper, we study minibatch MH methods, which instead use subsamples to enable scaling. We observe that most existing minibatch MH methods are inexact (i.e. they may change the target distribution), and show that this inexactness can cause arbitrarily large errors in inference. We propose a new exact minibatch MH method, TunaMH, which exposes a tunable trade-off between its batch size and its theoretically guaranteed convergence rate. We prove a lower bound on the batch size that any minibatch MH method must use to retain exactness while guaranteeing fast convergence-the first such bound for minibatch MH-and show TunaMH is asymptotically optimal in terms of the batch size. Empirically, we show TunaMH outperforms other exact minibatch MH methods on robust linear regression, truncated Gaussian mixtures, and logistic regression. * Equal contribution.Preprint. Under review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.