A chirality transfer approach using acyclic polyol intermediates for the synthesis of (+)-neostenine (1) has been developed. The sequential Overman/Claisen rearrangement of an allylic 1,2-diol was especially useful, installing two contiguous stereocenters with complete diastereoselectivity in a one-pot sequence. The SmI -mediated cyclization and the subsequent chemoselective reduction of a lactam moiety accomplished the first enantioselective total synthesis of (+)-neostenine (1).
This article describes the details of two new types of Overman rearrangement from allylic vicinal diols. Starting from identical diols, both bis(imidate)s and cyclic orthoamides were selectively synthesized by simply changing the reaction conditions. Whilst exposure of the bis(imidate)s to thermal conditions initiated the double Overman rearrangement to introduce two identical nitrogen groups in a single operation (the cascade-type Overman rearrangement), the reaction of cyclic orthoamides resulted in a single rearrangement (the orthoamide-type Overman rearrangement). The newly generated allylic alcohols from the orthoamide-type reaction can potentially undergo a variety of further transformations. For instance, we demonstrated an Overman/Claisen sequence in one pot. The most conspicuous feature of this method is that it offers precise control over the number of Overman rearrangements from the same allylic vicinal diols. This method also excludes the tedious protecting-group manipulations of the homoallylic alcohols, which are necessary in conventional Overman rearrangements. All of the performed rearrangements proceeded in a completely diastereoselective fashion through a chair-like transition state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.