Granulation is the process of forming large aggregates from fine particles using a high shear mixer. This method is used in several industries from pharmaceuticals to chemical and fertilizer production. This research will study the effect of four process variables: speed of mixer rotation in the range 100 to 200rpm, powder bed mass (25 to 40g), mass of the initial nucleus (0.6 to 2g), and binder viscosity (water, carboxymethyl cellulose (CMC) solutions with concentrations in the range 0.5 to 20g/L) on single nuclei growth kinetics in low mixing devices. The powders under study were: lactose, tea, sugar, starch, and limestone. The results show the initial size of nuclei, the initial mass of the powder bed and binder viscosity and speed of rotation all influence the rate of nuclei growth. Analysis of the stokes deformation number of the nuclei show that growth rate of the nuclei decreases as the deformation number increases whilst the percentage gain in mass of the nuclei increases with increasing deformation number. The binder viscosity was shown to have the biggest influence of the growth rate of the nuclei. Results show that difference in powder density also has an effect on the growth kinetics of nuclei. The initial position of nuclei was also shown to influence the nuclei growth rate; the closer the starting position of the nuclei to the wall of the vessel the slower the growth rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.