The ultimate objective of this paper is to describe the experience of using a machine learning model prepared by the ensemble method to prevent stuck pipe events during well construction process on extended reach wells. The tasks performed include collecting, analyzing and cleaning historical data, selecting and preparing a machine learning model, testing it on real-time data by means of desktop application. The idea is to display the solution at the rig floor, allowing Driller to quickly take actions for prevention of stuck pipe event. Historical data mining and analysis were performed using software for remote monitoring. Preparation, labelling and cleaning of historical and real-time data were executed using programmable scripts and big data techniques. The machine learning algorithm was developed using the ensemble method, which allows to combine several models to improve the final result. On the field of interest, the most common type of stuck pipe are solids induced pack offs. They occur due to insufficient hole cleaning from drilled cuttings and wellbore collapse due to rocks instability. Stuck pipe prevention on extended reach drilling (ERD) wells requires holistic approach meanwhile final role is assigned to the driller. Due to continuously exceeding ERD envelope and increased workloads on both personnel and drilling equipment, the effectiveness of preventing accidents is deteriorating. This leads to severe consequences: Bottom Hole Assembly lost in hole, the necessity to re-drill the bore and eventually to increased Non-Productive Time (NPT). Developed application based on ensemble machine learning algorithm shows prediction accuracy above 94%. Reacting on alarms, driller can quickly take measures to prevent downhole accidents during well construction of ERD wells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.