By using first principles calculations, we show that fine tuning of both p- and n-type doping can be realized on single-wall carbon nanotubes (SWNTs) by tuning the electron affinity or ionization potential of the organic and organometallic molecules encapsulated inside SWNTs. This novel type of SWNT-based material offers great promise for molecular electronics because of its air stability, synthetic simplicity and the abundance of organic and organometallic molecules.
The conductance of a single 4,4 bipyridine (44BPD) molecule connected to two gold electrodes is calculated using a density functional theory based Green function method. The atomic geometry of such a molecular junction is constructed from the optimized structure of a gold trimer-44BPD-gold trimer complex. Resonant conduction is the main feature of its transport properties. The magnitude of the transmission coefficient at the Fermi level is determined to be T = 1.01 × 10(-2), which is in excellent agreement with the experimental value. The dependence of the transmission on the Au-N bond length and the torsion angle is also discussed.
A self-consistent ab initio approach for calculating electron transport through molecular electronic devices is developed. It is based on density functional theory (DFT) calculations and the Green's function technique employing a finite basis of local orbitals. The device is rigorously separated into the extended molecule region and the electrode region. In the DFT part calculating the Hamiltonian matrix of the extended molecule from its density matrix, the electrostatic correction induced by electrodes and the exchange-correlation correction due to the spatial diffuseness of localized basis functions are included. Our approach is efficient and accurate, with a controllable error to deal with such open systems. A one-dimensional infinite gold monatomic chain, whose electronic structure can be known from conventional DFT calculations with periodic boundary conditions (PBCs), is employed to validate the accuracy of our approach. With both corrections, our result for the gold chain at equilibrium is in excellent agreement with the PBC DFT result. We find that, for the gold chain, the exchange-correlation correction is more significant than the electrostatic correction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.