Global navigation satellite system (GNSS) is a well-established sensors in the recent ionosphere research. By comparing with classical meteorological equipments, the GNSS application can obtain more reliable and precious ionospheric total electron content (TEC) result. However, the most used GNSS ionospheric tomography technique is sensitive to a priori information due to the sparse and non-uniform distribution of GNSS stations. In this paper, we propose an improved method based on adaptive Laplacian smoothing and algebraic reconstruction technique (ALS-ART). Compared with traditional constant constraints, this method is less dependent on a priori information and adaptive smoothing constraints is closer to the actual situation. Tomography experiments using simulated data show that reconstruction accuracy of ionospheric electron density using ALS-ART method is significantly improved. We also use the method to do the analysis of real observation data and compare the tomography results with ionosonde observation data. The results demonstrate the superiority and reliability of the proposed method compared to traditional constant constraints method which will further improve the capability of obtaining precious ionosphere TEC by using GNSS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.