The application of gas-liquid membrane contactors for ethane-ethylene separation seems to offer a good alternative to conventional energy-intensive processes. This work aims to develop new hydrophobic composite membranes with active ethylene carriers and to demonstrate their potential for ethylene/ethane separation in gas-liquid membrane contactors. For the first time, hybrid membrane materials based on polyoctylmethylsiloxane (POMS) and silver tetrafluoroborate, with a Si:Ag ratio of 10:0.11 and 10:2.2, have been obtained. This technique allowed us to obtain POMS-based membranes with silver nanoparticles (8 nm), which are dispersed in the polymer matrix. The dispersion of silver in the POMS matrix is confirmed by the data IR-spectroscopy, wide-angle X-ray diffraction, and X-ray fluorescence analyses. These membranes combine the hydrophobicity of POMS and the selectivity of silver ions toward ethylene. It was shown that ethylene sorption at 600 mbar rises from 0.89 cm3(STP)/g to 3.212 cm3(STP)/g with an increase of Ag content in POMS from 0 to 9 wt%. Moreover, the membrane acquires an increased sorption affinity for ethylene. The ethylene/ethane sorption selectivity of POMS is 0.64; for the membrane with 9 wt% silver nanoparticles, the ethylene/ethane sorption selectivity was 2.46. Based on the hybrid material, POMS-Ag, composite membranes were developed on a polyvinylidene fluoride (PVDF) porous support, with a selective layer thickness of 5–10 µm. The transport properties of the membranes were studied by separating a binary mixture of ethylene/ethane at 20/80% vol. It has been shown that the addition of silver nanoparticles to the POMS matrix leads to a decrease in the ethylene permeability, but ethylene/ethane selectivity increases from 0.9 (POMS) to 1.3 (9 wt% Ag). It was noted that when the POMS-Ag membrane is exposed to the gas mixture flow for 3 h, the selectivity increases to 1.3 (0.5 wt% Ag) and 2.3 (9 wt% Ag) due to an increase in ethylene permeability. Testing of the obtained membranes in a gas-liquid contactor showed that the introduction of silver into the POMS matrix makes it possible to intensify the process of ethylene mass transfer by more than 1.5 times.
A promising solution for the implementation of extraction processes is liquid–liquid membrane contactors. The transfer of the target component from one immiscible liquid to another is carried out inside membrane pores. For the first time, highly asymmetric track-etched membranes made of polyethylene terephthalate (PET) of the same thickness but with different pore diameters (12.5–19 nm on one side and hundreds of nanometers on the other side) were studied in the liquid–liquid membrane contactor. For analysis of the liquid–liquid interface stability, two systems widely diverging in the interfacial tension value were used: water–pentanol and water–hexadecane. The interface stability was investigated depending on the following process parameters: the porous structure, the location of the asymmetric membrane in the contactor, the velocities of liquids, and the pressure drop between them. It was shown that the stability of the interface increases with decreasing pore size. Furthermore, it is preferable to supply the aqueous phase from the side of the asymmetric membrane with the larger pore size. The asymmetry of the porous structure of the membrane makes it possible to increase the range of pressure drop values between the phases by at least two times (from 5 to 10 kPa), which does not lead to mutual dispersion of the liquids. The liquid–liquid contactor based on the asymmetric track-etched membranes allows for the extraction of impurities from the organic phase into the aqueous phase by using a 1% solution of acetone in hexadecane as an example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.