In this paper, we introduce functional networks as a generalization and extension of the standard neural networks in the sense that every problem that can be solved by a neural network can also be formulated by a functional network. But, more importantly, we give examples of problems that cannot be solved using neural networks but can be naturally formulated using functional networks. Functional networks are defined as a collection of connected functional units on a set of nodes. A functional unit or neuron connects input nodes to output nodes. The values of the output nodes are calculated from the values of the input nodes by given functions of one or several arguments. The main differences with neural networks are that (a) the neural functions can be multivariate and can be different from neuron to neuron (in which case, no weights are necessary, because they subsume by the different functions) and (b) the neuron outputs can be coupled, that is, coincident. This mathematical model of functional networks parallels printed circuit boards with electronic components, thus giving an intuitive interpretation to functional networks and an interesting and natural additional application. The existence of functional units with common outputs leads to functional equations whose solution can lead to substantial simplification of the initial topology of the network and the neural functions involved. Two types of functional networks (the one‐layer and serial functional networks) are discussed in detail. For the one‐layer functional networks, a very simple simplification algorithm is given. For the serial functional networks, systems of functional equations are obtained. The methods are illustrated by several examples of applications. © 2000 John Wiley & Sons, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.