Overactivation of NMDA receptors (NMDARs) is a critical early step in glutamate-evoked excitotoxic injury of CNS neurons. Distinct NMDAR-coupled pathways specified by, for example, receptor location or subunit composition seem to govern glutamate-induced excitotoxic death, but there is much uncertainty concerning the underlying mechanisms of pathway selection. Here we ask whether, and if so how, route-specific vulnerability is coupled to Ca 2؉ overload and mitochondrial dysfunction, which is also a known, central component of exitotoxic injury. In cultured hippocampal neurons, overactivation of only extrasynaptic NMDARs resulted in Ca 2؉ entry strong enough to promote Ca 2؉ overload, which subsequently leads to mitochondrial dysfunction and cell death. Receptor composition per se appears not to be a primary factor for specifying signal coupling, as NR2B inhibition abolished Ca 2؉ loading and was protective only in predominantly NR2B-expressing young neurons. In older neurons expressing comparable levels of NR2A-and NR2B-containing NMDARs, amelioration of Ca 2؉ overload required the inhibition of extrasynaptic receptors containing both NR2 subunits. Prosurvival synaptic stimuli also evoked Ca 2؉ entry through both N2A-and NR2B-containing NMDARs, but, in contrast to excitotoxic activation of extrasynaptic NMDARs, produced only low-amplitude cytoplasmic Ca 2؉ spikes and modest, nondamaging mitochondrial Ca 2؉ accumulation. The results-showing that the various routes of excitotoxic Ca 2؉ entry converge on a common pathway involving Ca 2؉ overloadinduced mitochondrial dysfunction-reconcile and unify many aspects of the ''route-specific'' and ''calcium load-dependent'' views of exitotoxic injury. extrasynaptic receptors ͉ hippocampal neurons ͉ mitochondria ͉ NMDA receptor ͉ synaptic activation
Presynaptic α 2 δ subunits of voltage-gated calcium channels regulate channel abundance and are involved in glutamatergic synapse formation. However, little is known about the specific functions of the individual α 2 δ isoforms and their role in GABAergic synapses. Using primary neuronal cultures of embryonic mice of both sexes, we here report that presynaptic overexpression of α 2 δ-2 in GABAergic synapses strongly increases clustering of postsynaptic GABA A Rs. Strikingly, presynaptic α 2 δ-2 exerts the same effect in glutamatergic synapses, leading to a mismatched localization of GABA A Rs. This mismatching is caused by an aberrant wiring of glutamatergic presynaptic boutons with GABAergic postsynaptic positions. The trans-synaptic effect of α 2 δ-2 is independent of the prototypical cell-adhesion molecules α-neurexins (α-Nrxns); however, α-Nrxns together with α 2 δ-2 can modulate postsynaptic GABA A R abundance. Finally, exclusion of the alternatively spliced exon 23 of α 2 δ-2 is essential for the trans-synaptic mechanism. The novel function of α 2 δ-2 identified here may explain how abnormal α 2 δ subunit expression can cause excitatory–inhibitory imbalance often associated with neuropsychiatric disorders. SIGNIFICANCE STATEMENT Voltage-gated calcium channels regulate important neuronal functions such as synaptic transmission. α 2 δ subunits modulate calcium channels and are emerging as regulators of brain connectivity. However, little is known about how individual α 2 δ subunits contribute to synapse specificity. Here, we show that presynaptic expression of a single α 2 δ variant can modulate synaptic connectivity and the localization of inhibitory postsynaptic receptors. Our findings provide basic insights into the development of specific synaptic connections between nerve cells and contribute to our understanding of normal nerve cell functions. Furthermore, the identified mechanism may explain how an altered expression of calcium channel subunits can result in aberrant neuronal wiring often associated with neuropsychiatric disorders such as autism or schizophrenia.
Glutamate excitotoxicity, a major component of many neurodegenerative disorders, is characterized by excessive calcium influx selectively through NMDA receptors (NMDARs). However, there is a substantial uncertainty concerning why other known routes of significant calcium entry, in particular voltage-gated calcium channels (VGCCs), are not similarly toxic. Here, we report that in the majority of neurons in rat hippocampal and cortical cultures, maximal L-type VGCC activation induces much lower calcium loading than toxic NMDAR activation. Consequently, few depolarization-activated neurons exhibit calcium deregulation and cell death. Activation of alternative routes of calcium entry induced neuronal death in proportion to the degree of calcium loading. In a small subset of neurons depolarization evoked stronger calcium elevations, approaching those induced by toxic NMDA. These neurons were characterized by elevated expression of VGCCs and enhanced voltage-gated calcium currents, mitochondrial dysfunction and cell death. Preventing VGCC-dependent mitochondrial calcium loading resulted in stronger cytoplasmic calcium elevations, whereas inhibiting mitochondrial calcium clearance accelerated mitochondrial depolarization. Both observations further implicate mitochondrial dysfunction in VGCC-mediated cell death. Results indicate that neuronal vulnerability tracks the extent of calcium loading but does not appear to depend explicitly on the route of calcium entry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.